64 research outputs found

    Design and Implementation of Novel Fractional-Order Controllers for Stabilized Platforms

    Get PDF
    As a servo system to isolate disturbance or track trajectory, stabilized platform requires high-quality control. However, conventional PID control fails to meet that requirement.In this paper, a new controller design scheme is proposed for stabilized platform based on fractional calculus. The designed controller is called fractional-order PID (FOPID) controller, which has two extra parameters compared to conventional PID controller. On one hand, it enables people have more degrees of freedom to design FOPID controller, on the other hand, its differential order and integral order provides more flexibility to tune the controller performance. Therefore, a design method of FOPID controller based on dynamic software modeling is presented. To obtain the idea controller’s parameters, the particle swarm optimization (PSO) bionic algorithm is used to optimize an objective function.In addition, software simulation platform and hardware experiment platform are built to design and test the FOPID controller. Finally, simulations and experimental results are included to show the effectiveness of the new control method

    Autonomous landing of fixed-wing aircraft on mobile platforms

    Get PDF
    E n esta tesis se propone un nuevo sistema que permite la operación de aeronaves autónomas sin tren de aterrizaje. El trabajo está motivado por el interés industrial en aeronaves con la capacidad de volar a gran altitud, con más capacidad de carga útil y capaces de aterrizar con viento cruzado. El enfoque seguido en este trabajo consiste en eliminar el sistema de aterrizaje de una aeronave de ala fija empleando una plataforma móvil de aterrizaje en tierra. La aeronave y la plataforma deben sincronizar su movimiento antes del aterrizaje, lo que se logra mediante la estimación del estado relativo entre ambas y el control cooperativo del movimiento. El objetivo principal de esta Tesis es el desarrollo de una solución práctica para el aterrizaje autónomo de una aeronave de ala fija en una plataforma móvil. En la tesis se combinan nuevos métodos con experimentos prácticos para los cuales se ha desarrollado un sistema de pruebas específico. Se desarrollan dos variantes diferentes del sistema de aterrizaje. El primero presta atención especial a la seguridad, es robusto ante retrasos en la comunicación entre vehículos y cumple procedimientos habituales de aterrizaje, al tiempo que reduce la complejidad del sistema. En el segundo se utilizan trayectorias optimizadas del vehículo y sincronización bilateral de posición para maximizar el rendimiento del aterrizaje en términos de requerimientos de longitud necesaria de pista, pero la estabilidad es dependiente del retraso de tiempo, con lo cual es necesario desarrollar un controlador estabilizador ampliado, basado en pasividad, que permite resolver este problema. Ambas estrategias imponen requisitos funcionales a los controladores de cada uno de los vehículos, lo que implica la capacidad de controlar el movimiento longitudinal sin afectar el control lateral o vertical, y viceversa. El control de vuelo basado en energía se utiliza para proporcionar dicha funcionalidad a la aeronave. Los sistemas de aterrizaje desarrollados se han analizado en simulación estableciéndose los límites de rendimiento mediante múltiples repeticiones aleatorias. Se llegó a la conclusión de que el controlador basado en seguridad proporciona un rendimiento de aterrizaje satisfactorio al tiempo que suministra una mayor seguridad operativa y un menor esfuerzo de implementación y certificación. El controlador basado en el rendimiento es prometedor para aplicaciones con una longitud de pista limitada. Se descubrió que los beneficios del controlador basado en el rendimiento son menos pronunciados para una dinámica de vehículos terrestres más lenta. Teniendo en cuenta la dinámica lenta de la configuración del demostrador, se eligió el enfoque basado en la seguridad para los primeros experimentos de aterrizaje. El sistema de aterrizaje se validó en diversas pruebas de aterrizaje exitosas, que, a juicio del autor, son las primeras en el mundo realizadas con aeronaves reales. En última instancia, el concepto propuesto ofrece importantes beneficios y constituye una estrategia prometedora para futuras soluciones de aterrizaje de aeronaves.In this thesis a new landing system is proposed, which allows for the operation of autonomous aircraft without landing gear. The work was motivated by the industrial need for more capable high altitude aircraft systems, which typically suffer from low payload capacity and high crosswind landing sensitivity. The approach followed in this work consists in removing the landing gear system from the aircraft and introducing a mobile ground-based landing platform. The vehicles must synchronize their motion prior to landing, which is achieved through relative state estimation and cooperative motion control. The development of a practical solution for the autonomous landing of an aircraft on a moving platform thus constitutes the main goal of this thesis. Therefore, theoretical investigations are combined with real experiments for which a special setup is developed and implemented. Two different landing system variants are developed — the safety-based landing system is robust to inter-vehicle communication delays and adheres to established landing procedures, while reducing system complexity. The performance-based landing system uses optimized vehicle trajectories and bilateral position synchronization to maximize landing performance in terms of used runway, but suffers from time delay-dependent stability. An extended passivity-based stabilizing controller was implemented to cope with this issue. Both strategies impose functional requirements on the individual vehicle controllers, which imply independent controllability of the translational degrees of freedom. Energy-based flight control is utilized to provide such functionality for the aircraft. The developed landing systems are analyzed in simulation and performance bounds are determined by means of repeated random sampling. The safety-based controller was found to provide satisfactory landing performance while providing higher operational safety, and lower implementation and certification effort. The performance-based controller is promising for applications with limited runway length. The performance benefits were found to be less pronounced for slower ground vehicle dynamics. Given the slow dynamics of the demonstrator setup, the safety-based approach was chosen for first landing experiments. The landing system was validated in a number of successful landing trials, which to the author’s best knowledge was the first time such technology was demonstrated on the given scale, worldwide. Ultimately, the proposed concept offers decisive benefits and constitutes a promising strategy for future aircraft landing solutions

    Experimental Investigation of a MAV-Scale Cyclocopter

    Get PDF
    The development of an efficient, maneuverable, and gust tolerant hovering concept with a multi-modal locomotion capability is key to the success of micro air vehicles (MAVs) operating in multiple mission scenarios. The current research investigated performance of two unconventional cycloidal-rotor-based (cyclocopter) configurations: (1) twin-cyclocopter and (2) all-terrain cyclocopter. The twin-cyclocopter configuration used two cycloidal rotors (cyclorotors) and a smaller horizontal edge-wise nose rotor to counteract the torque produced by the cyclorotors. The all-terrain cyclocopter relied on four cyclorotors oriented in an H-configuration. Objectives of this research include the following: (1) develop control strategies to enable level forward flight of a cyclocopter purely relying on thrust vectoring, (2) identify flight dynamics model in forward flight, (3) experimentally evaluate gust tolerance strategies, and (4) determine feasibility and performance of multi-modal locomotion of the cyclocopter configuration. The forward flight control strategy for the twin-cyclocopter used a unique combination of independent thrust vectoring and rotational speed control of the cyclorotors. Unlike conventional rotary-winged vehicles, the cyclocopter propelled in forward flight by thrust vectoring instead of pitching the entire fuselage. While the strategy enabled the vehicle to maintain a level attitude in forward flight, it was accompanied by significant yaw-roll controls coupling and gyroscopic coupling. To understand these couplings and characterize the bare airframe dynamics, a 6-DOF flight dynamics model of the cyclocopter was extracted using a time-domain system identification technique. Decoupling methods involved simultaneously mixing roll and yaw inputs in the controller. After implementing the controls mixing strategy in the closed-loop feedback system, the cyclocopter successfully achieved level forward flight up to 5 m/s. Thrust vectoring capability also proved critical for gust mitigation. Thrust vectoring input combined with flow feedback and position feedback improved gust tolerance up to 4 m/s for a twin-cyclocopter mounted on a 6-DOF test stand. Flow feedback relied on a dual-axis flowprobe attached to differential pressure sensors and position feedback was based on data recorded by the VICON motion capture system. The vehicle was also able to recover initial position for crosswind scenarios tested at various side-slip angles up to 30 degrees. Unlike existing multi-modal platforms, the all-terrain cyclocopter solely relied on its four cyclorotors as main source of propulsion, as well as wheels. Aerial and aquatic modes used aerodynamic forces generated by modulating cyclorotor rotational speeds and thrust vectors while terrestrial mode used motor torque. In aerial mode, cyclorotors operated at 1550 rpm and consumed 232 W to sustain hover. In terrestrial mode, forward translation at 2 m/s required 28 W, which was an 88% reduction in power consumption required to hover. In aquatic mode, cyclorotors operated at 348 rpm to achieve 1.3 m/s translation and consumed 19 W, a 92% reduction in power consumption. With only a modest weight addition of 200 grams for wheels and retractable landing gear, the versatile cyclocopter platform achieved sustained hover, efficient translation and rotational maneuvers on ground, and aquatic locomotion

    NASA Tech Briefs, March 2011

    Get PDF
    Topics covered include: Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation; Airborne Radar Interferometric Repeat-Pass Processing; Plug-and-Play Environmental Monitoring Spacecraft Subsystem; Power-Combined GaN Amplifier with 2.28-W Output Power at 87 GHz; Wallops Ship Surveillance System; Source Lines Counter (SLiC) Version 4.0; Guidance, Navigation, and Control Program; Single-Frame Terrain Mapping Software for Robotic Vehicles; Auto Draw from Excel Input Files; Observation Scheduling System; CFDP for Interplanetary Overlay Network; X-Windows Widget for Image Display; Binary-Signal Recovery; Volumetric 3D Display System with Static Screen; MMIC Replacement for Gunn Diode Oscillators; Feature Acquisition with Imbalanced Training Data; Mount Protects Thin-Walled Glass or Ceramic Tubes from Large Thermal and Vibration Loads; Carbon Nanotube-Based Structural Health Monitoring Sensors; Wireless Inductive Power Device Suppresses Blade Vibrations; Safe, Advanced, Adaptable Isolation System Eliminates the Need for Critical Lifts; Anti-Rotation Device Releasable by Insertion of a Tool; A Magnetically Coupled Cryogenic Pump; Single Piezo-Actuator Rotary-Hammering Drill; Fire-Retardant Polymeric Additives; Catalytic Generation of Lift Gases for Balloons; Ionic Liquids to Replace Hydrazine; Variable Emittance Electrochromics Using Ionic Electrolytes and Low Solar Absorptance Coatings; Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger; Multi-Mission Power Analysis Tool; Correction for Self-Heating When Using Thermometers as Heaters in Precision Control Applications; Gravitational Wave Detection with Single-Laser Atom Interferometers; Titanium Alloy Strong Back for IXO Mirror Segments; Improved Ambient Pressure Pyroelectric Ion Source; Multi-Modal Image Registration and Matching for Localization of a Balloon on Titan; Entanglement in Quantum-Classical Hybrid; Algorithm for Autonomous Landing; Quantum-Classical Hybrid for Information Processing; Small-Scale Dissipation in Binary-Species Transitional Mixing Layers; Superpixel-Augmented Endmember Detection for Hyperspectral Images; Coding for Parallel Links to Maximize the Expected Value of Decodable Messages; and Microwave Tissue Soldering for Immediate Wound Closure

    Earth Resources: A continuing bibliography with indexes, issue 33

    Get PDF
    This bibliography list 436 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution sytems, instrumentation and sensors, and economic analysis

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Navigation/traffic control satellite mission study. Volume 3 - System concepts

    Get PDF
    Satellite network for air traffic control, solar flare warning, and collision avoidanc
    corecore