43 research outputs found

    MR-CUDASW - GPU accelerated Smith-Waterman algorithm for medium-length (meta)genomic data

    Get PDF
    The idea of using a graphics processing unit (GPU) for more than simply graphic output purposes has been around for quite some time in scientific communities. However, it is only recently that its benefits for a range of bioinformatics and life sciences compute-intensive tasks has been recognized. This thesis investigates the possibility of improving the performance of the overlap determination stage of an Overlap Layout Consensus (OLC)-based assembler by using a GPU-based implementation of the Smith-Waterman algorithm. In this thesis an existing GPU-accelerated sequence alignment algorithm is adapted and expanded to reduce its completion time. A number of improvements and changes are made to the original software. Workload distribution, query profile construction, and thread scheduling techniques implemented by the original program are replaced by custom methods specifically designed to handle medium-length reads. Accordingly, this algorithm is the first highly parallel solution that has been specifically optimized to process medium-length nucleotide reads (DNA/RNA) from modern sequencing machines (i.e. Ion Torrent). Results show that the software reaches up to 82 GCUPS (Giga Cell Updates Per Second) on a single-GPU graphic card running on a commodity desktop hardware. As a result it is the fastest GPU-based implemen- tation of the Smith-Waterman algorithm tailored for processing medium-length nucleotide reads. Despite being designed for performing the Smith-Waterman algorithm on medium-length nucleotide sequences, this program also presents great potential for improving heterogeneous computing with CUDA-enabled GPUs in general and is expected to make contributions to other research problems that require sensitive pairwise alignment to be applied to a large number of reads. Our results show that it is possible to improve the performance of bioinformatics algorithms by taking full advantage of the compute resources of the underlying commodity hardware and further, these results are especially encouraging since GPU performance grows faster than multi-core CPUs

    Novel computational techniques for mapping and classifying Next-Generation Sequencing data

    Get PDF
    Since their emergence around 2006, Next-Generation Sequencing technologies have been revolutionizing biological and medical research. Quickly obtaining an extensive amount of short or long reads of DNA sequence from almost any biological sample enables detecting genomic variants, revealing the composition of species in a metagenome, deciphering cancer biology, decoding the evolution of living or extinct species, or understanding human migration patterns and human history in general. The pace at which the throughput of sequencing technologies is increasing surpasses the growth of storage and computer capacities, which creates new computational challenges in NGS data processing. In this thesis, we present novel computational techniques for read mapping and taxonomic classification. With more than a hundred of published mappers, read mapping might be considered fully solved. However, the vast majority of mappers follow the same paradigm and only little attention has been paid to non-standard mapping approaches. Here, we propound the so-called dynamic mapping that we show to significantly improve the resulting alignments compared to traditional mapping approaches. Dynamic mapping is based on exploiting the information from previously computed alignments, helping to improve the mapping of subsequent reads. We provide the first comprehensive overview of this method and demonstrate its qualities using Dynamic Mapping Simulator, a pipeline that compares various dynamic mapping scenarios to static mapping and iterative referencing. An important component of a dynamic mapper is an online consensus caller, i.e., a program collecting alignment statistics and guiding updates of the reference in the online fashion. We provide Ococo, the first online consensus caller that implements a smart statistics for individual genomic positions using compact bit counters. Beyond its application to dynamic mapping, Ococo can be employed as an online SNP caller in various analysis pipelines, enabling SNP calling from a stream without saving the alignments on disk. Metagenomic classification of NGS reads is another major topic studied in the thesis. Having a database with thousands of reference genomes placed on a taxonomic tree, the task is to rapidly assign a huge amount of NGS reads to tree nodes, and possibly estimate the relative abundance of involved species. In this thesis, we propose improved computational techniques for this task. In a series of experiments, we show that spaced seeds consistently improve the classification accuracy. We provide Seed-Kraken, a spaced seed extension of Kraken, the most popular classifier at present. Furthermore, we suggest ProPhyle, a new indexing strategy based on a BWT-index, obtaining a much smaller and more informative index compared to Kraken. We provide a modified version of BWA that improves the BWT-index for a quick k-mer look-up

    Utilising Nanopore technology for interactive real-time metagenomics

    Get PDF
    Nanopore sequencing technology has the potential to revolutionise metagenomics by providing long reads, which can improve taxonomic classification and assembly contiguity, near real-time analysis, enabling rapid results and improved sequencing efficiency, and portability, allowing sequencing in the field. However, the full potential of these features is largely unrealised due to the lack of available tools and methods. In this thesis, we report on tools and analysis methods that facilitate the use of nanopore sequencing technology for metagenomics and real-time analysis. Applying metagenomics to samples containing a mix of eukaryote species, such as bee-collected pollen, is challenging due to lack of available reference genomes. This thesis presents a new method, RevMet (Reverse Metagenomics), for semi-quantitative characterisation of mixed eukaryote samples without the need for complete reference genomes. Instead, each reference species is represented by a low-cost genome skim. The short-read reference skims are mapped to the long nanopore query reads to individually classify them, which is the reverse of the standard metagenomic approach of mapping reads to (assembled) references. Recognising the need for an open-source software tool for real-time analysis and visualisation of metagenomic sequencing data, we developed MARTi (Metagenomic Analysis in Real-Time). MARTi provides a rapid, lightweight web interface that allows users to view community composition and identify antimicrobial resistance genes in real time. MARTi consists of two main parts, the Engine and the GUI, and can be configured in multiple ways to suit the needs of the user. We demonstrate MARTi on live nanopore sequencing runs - firstly, using a mock gut community and, secondly, using clinical faecal gut microbiome samples taken from patients suffering from liver disease

    Book of Abstracts: Sixth bwHPC Symposium, 30 September 2019, Karlsruhe, Germany

    Get PDF

    The MGX framework for microbial community analysis

    Get PDF
    Jaenicke S. The MGX framework for microbial community analysis. Bielefeld: Universität Bielefeld; 2020

    Homology sequence analysis using GPU acceleration

    Get PDF
    A number of problems in bioinformatics, systems biology and computational biology field require abstracting physical entities to mathematical or computational models. In such studies, the computational paradigms often involve algorithms that can be solved by the Central Processing Unit (CPU). Historically, those algorithms benefit from the advancements of computing power in the serial processing capabilities of individual CPU cores. However, the growth has slowed down over recent years, as scaling out CPU has been shown to be both cost-prohibitive and insecure. To overcome this problem, parallel computing approaches that employ the Graphics Processing Unit (GPU) have gained attention as complementing or replacing traditional CPU approaches. The premise of this research is to investigate the applicability of various parallel computing platforms to several problems in the detection and analysis of homology in biological sequence. I hypothesize that by exploiting the sheer amount of computation power and sequencing data, it is possible to deduce information from raw sequences without supplying the underlying prior knowledge to come up with an answer. I have developed such tools to perform analysis at scales that are traditionally unattainable with general-purpose CPU platforms. I have developed a method to accelerate sequence alignment on the GPU, and I used the method to investigate whether the Operational Taxonomic Unit (OTU) classification problem can be improved with such sheer amount of computational power. I have developed a method to accelerate pairwise k-mer comparison on the GPU, and I used the method to further develop PolyHomology, a framework to scaffold shared sequence motifs across large numbers of genomes to illuminate the structure of the regulatory network in yeasts. The results suggest that such approach to heterogeneous computing could help to answer questions in biology and is a viable path to new discoveries in the present and the future.Includes bibliographical reference

    Skaalautuvat laskentamenetelmät suuren kapasiteetin sekvensointidatan analytiikkaan populaatiogenomiikassa

    Get PDF
    High-throughput sequencing (HTS) technologies have enabled rapid DNA sequencing of whole-genomes collected from various organisms and environments, including human tissues, plants, soil, water, and air. As a result, sequencing data volumes have grown by several orders of magnitude, and the number of assembled whole-genomes is increasing rapidly as well. This whole-genome sequencing (WGS) data has revealed the genetic variation in humans and other species, and advanced various fields from human and microbial genomics to drug design and personalized medicine. The amount of sequencing data has almost doubled every six months, creating new possibilities but also big data challenges in genomics. Diverse methods used in modern computational biology require a vast amount of computational power, and advances in HTS technology are even widening the gap between the analysis input data and the analysis outcome. Currently, many of the existing genomic analysis tools, algorithms, and pipelines are not fully exploiting the power of distributed and high-performance computing, which in turn limits the analysis throughput and restrains the deployment of the applications to clinical practice in the long run. Thus, the relevance of harnessing distributed and cloud computing in bioinformatics is more significant than ever before. Besides, efficient data compression and storage methods for genomic data processing and retrieval integrated with conventional bioinformatics tools are essential. These vast datasets have to be stored and structured in formats that can be managed, processed, searched, and analyzed efficiently in distributed systems. Genomic data contain repetitive sequences, which is one key property in developing efficient compression algorithms to alleviate the data storage burden. Moreover, indexing compressed sequences appropriately for bioinformatics tools, such as read aligners, offers direct sequence search and alignment capabilities with compressed indexes. Relative Lempel-Ziv (RLZ) has been found to be an efficient compression method for repetitive genomes that complies with the data-parallel computing approach. RLZ has recently been used to build hybrid-indexes compatible with read aligners, and we focus on extending it with distributed computing. Data structures found in genomic data formats have properties suitable for parallelizing routine bioinformatics methods, e.g., sequence matching, read alignment, genome assembly, genotype imputation, and variant calling. Compressed indexing fused with the routine bioinformatics methods and data-parallel computing seems a promising approach to building population-scale genome analysis pipelines. Various data decomposition and transformation strategies are studied for optimizing data-parallel computing performance when such routine bioinformatics methods are executed in a complex pipeline. These novel distributed methods are studied in this dissertation and demonstrated in a generalized scalable bioinformatics analysis pipeline design. The dissertation starts from the main concepts of genomics and DNA sequencing technologies and builds routine bioinformatics methods on the principles of distributed and parallel computing. This dissertation advances towards designing fully distributed and scalable bioinformatics pipelines focusing on population genomic problems where the input data sets are vast and the analysis results are hard to achieve with conventional computing. Finally, the methods studied are applied in scalable population genomics applications using real WGS data and experimented with in a high performance computing cluster. The experiments include mining virus sequences from human metagenomes, imputing genotypes from large-scale human populations, sequence alignment with compressed pan-genomic indexes, and assembling reference genomes for pan-genomic variant calling.Suuren kapasiteetin sekvensointimenetelmät (High-Throughput Sequencing, HTS) ovat mahdollistaneet kokonaisten genomien nopean ja huokean sekvensoinnin eri organismeista ja ympäristöistä, mukaan lukien kudos-, maaperä-, vesistö- ja ilmastonäytteet. Tämän seurauksena sekvensointidatan ja koostettujen kokogenomien määrät ovat kasvaneet nopeasti. Kokogenomin sekvensointi on lisännyt ihmisen ja muiden lajien geneettisen perimän tietämystä ja edistänyt eri tieteenaloja ympäristötieteistä lääkesuunnitteluun ja yksilölliseen lääketieteeseen. Sekvensointidatan määrä on lähes kaksinkertaistunut puolivuosittain, mikä on luonut uusia mahdollisuuksia läpimurtoihin, mutta myös suuria datankäsittelyn haasteita. Nykyaikaisessa laskennallisessa biologiassa käytettävät monimutkaiset analyysimenetelmät vaativat yhä enemmän laskentatehoa HTS-datan kasvaessa, ja siksi HTS-menetelmien edistyminen kasvattaa kuilua raakadatasta lopullisiin analyysituloksiin. Useat tällä hetkellä käytetyistä genomianalyysityökaluista, algoritmeista ja ohjelmistoista eivät hyödynnä hajautetun laskennan tehoa kokonaisvaltaisesti, mikä puolestaan ​​hidastaa uusimpien analyysitulosten saamista ja rajoittaa tieteellisten ohjelmistojen käyttöönottoa kliinisessä lääketieteessä pitkällä aikavälillä. Näin ollen hajautetun ja pilvilaskennan hyödyntämisen merkitys bioinformatiikassa on tärkeämpää kuin koskaan ennen. Genomitiedon suoraa hakua ja käsittelyä tukevat pakkaus- ja tallennusmenetelmät mahdollistavat nopean ja tilatehokkaan genomianalytiikan. Uusia hajautettuihin järjestelmiin soveltuvia tietorakenteita tarvitaan, jotta näitä suuria datamääriä voidaan hallita, käsitellä, hakea ja analysoida tehokkaasti. Genomidata sisältää runsaasti toistuvia sekvenssejä, mikä on yksi keskeinen ominaisuus kehitettäessä tehokkaita pakkausalgoritmeja tiedontallennustaakkaa ja analysointia keventämään. Lisäksi pakattujen sekvenssien indeksointi yhdistettynä sekvenssilinjausmenetelmiin mahdollistaa sekvenssien satunnaishaun ja suoran linjauksen pakattuihin sekvensseihin. Relative Lempel-Ziv (RLZ) pakkausmenetelmä on todettu tehokkaaksi toistuville genomisekvensseille rinnakkaislaskentaa hyödyntäen. RLZ-menetelmää on viime aikoina sovellettu sekvenssilinjaukseen yhteensopiviin hybridi-indekseihin, joita tässä työssä on nopeutettu hajautetulla laskennalla. Genomiikan dataformaateista löytyvillä tietorakenteilla on ominaisuuksia, jotka soveltuvat hajautettuun sekvenssihakuun, sekvenssilinjaukseen, genomien koostamiseen, genotyyppien imputointiin ja varianttien havaitsemiseen. Pakattu indeksointi sovellettuna hajautetulla laskennalla tehostettuihin menetelmiin vaikuttaa lupaavalta lähestymistavalta populaatiogenomiikan analyysiohjelmistojen mukauttamiseksi suuriin datamääriin. Erilaisia ​​tiedon osittamis- ja muunnosstrategioita hyödynnetään suorituskyvyn tehostamiseen monivaiheisessa hajautetussa genomidatan prosessoinnissa. Näitä uusia skaalautuvia hajautettuja laskentamenetelmiä tutkitaan tässä väitöskirjassa ja demonstroidaan yleisluontoisella bioinformatiikan analyysiohjelmiston arkkitehtuurilla. Tässä työssä johdatellaan genomiikan ja DNA-sekvensointitekniikoiden peruskäsitteisiin ja esitellään rutiininomaisia ​​bioinformatiikan menetelmiä perustuen hajautetun ja rinnakkaislaskennan periaatteille. Väitöskirjassa edetään kohti täysin hajautettujen ja skaalautuvien bioinformatiikan ohjelmistojen suunnittelua keskittyen populaatiogenomiikan ongelmiin, joissa syötedatan määrät ovat suuria ja analyysitulosten saavuttaminen on hidasta tai jopa mahdotonta tavanomaisella laskennalla. Lopuksi tutkittuja menetelmiä sovelletaan tässä työssä kehitettyihin skaalautuviin populaatiogenomiikan sovelluksiin, joita koestetaan kokogenomidatalla supertietokoneen laskentaklusterissa. Kokeet sisältävät virussekvenssien louhintaa ihmisten metagenominäytteistä, genotyyppien täydentämistä (imputointia) suurista ihmispopulaatioista ja pan-genomisen indeksin pakkaamista sekvenssilinjauksen nopeuttamista varten. Lisäksi pakattua pan-genomia kokeillaan referenssigenomin koostamiseen populaatioon perustuvien varianttien havaitsemista varten

    High Performance Computing for DNA Sequence Alignment and Assembly

    Get PDF
    Recent advances in DNA sequencing technology have dramatically increased the scale and scope of DNA sequencing. These data are used for a wide variety of important biological analyzes, including genome sequencing, comparative genomics, transcriptome analysis, and personalized medicine but are complicated by the volume and complexity of the data involved. Given the massive size of these datasets, computational biology must draw on the advances of high performance computing. Two fundamental computations in computational biology are read alignment and genome assembly. Read alignment maps short DNA sequences to a reference genome to discover conserved and polymorphic regions of the genome. Genome assembly computes the sequence of a genome from many short DNA sequences. Both computations benefit from recent advances in high performance computing to efficiently process the huge datasets involved, including using highly parallel graphics processing units (GPUs) as high performance desktop processors, and using the MapReduce framework coupled with cloud computing to parallelize computation to large compute grids. This dissertation demonstrates how these technologies can be used to accelerate these computations by orders of magnitude, and have the potential to make otherwise infeasible computations practical

    Evolutionary genomics : statistical and computational methods

    Get PDF
    This open access book addresses the challenge of analyzing and understanding the evolutionary dynamics of complex biological systems at the genomic level, and elaborates on some promising strategies that would bring us closer to uncovering of the vital relationships between genotype and phenotype. After a few educational primers, the book continues with sections on sequence homology and alignment, phylogenetic methods to study genome evolution, methodologies for evaluating selective pressures on genomic sequences as well as genomic evolution in light of protein domain architecture and transposable elements, population genomics and other omics, and discussions of current bottlenecks in handling and analyzing genomic data. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that lead to the best results. Authoritative and comprehensive, Evolutionary Genomics: Statistical and Computational Methods, Second Edition aims to serve both novices in biology with strong statistics and computational skills, and molecular biologists with a good grasp of standard mathematical concepts, in moving this important field of study forward
    corecore