3,128 research outputs found

    A Low Noise Sub-Sampling PLL in Which Divider Noise Is Eliminated and PD-CP Noise Is not multiplied by N^2

    Get PDF
    This paper presents a 2.2-GHz low jitter sub-sampling based PLL. It uses a phase-detector/charge-pump (PD/CP)that sub-samples the VCO output with the reference clock. In contrast to what happens in a classical PLL, the PD/CP noise is not multiplied by N2 in this sub-sampling PLL, resulting in a low noise contribution from the PD/CP. Moreover, no frequency divider is needed in the locked state and hence divider noise and power can be eliminated. An added frequency locked loop guarantees correct frequency locking without degenerating jitter performance when in lock. The PLL is implemented in a standard 0.18- m CMOS process. It consumes 4.2 mA from a 1.8 V supply and occupies an active area of 0.4 X 0.45 m

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Switched Capacitor Loop Filter 와 Source Switched Charge Pump 를 이용한 Phase-Locked Loop 의 설계

    Get PDF
    학위논문(석사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2022.2. 정덕균.This thesis proposes a low integrated RMS jitter and low reference spur phase locked loop (PLL) using a switched capacitor loop filter and source switched charge pump. The PLL employs a single tunable charge pump which reduces current mis match across wide control voltage range and charge sharing effect to get high perfor mance of reference spur level. The switched capacitor loop filter is adopted to achieve insensitivity to temperature, supply voltage, and process variation of a resistor. The proposed PLL covers a wide frequency range and has a low integrated RMS jitter and low reference spur level to target various interface standards. The mechanism of switched capacitor loop filter and source switched charge pump is analyzed. Fabricated in 40 nm CMOS technology, the proposed analog PLL provides four phase for a quarter-rate transmitter, consumes 6.35 mW at 12 GHz using 750 MHz reference clock, and occupies an 0.008 mm2 with an integrated RMS jitter (10 kHz to 100 MHz) of 244.8 fs. As a result, the PLL achieves a figure of merit (FoM) of -244.2 dB with high power efficiency of 0.53 mW/GHz, and reference spur level is -60.3 dBc.본 논문에서는 낮은 RMS jitter 와 낮은 레퍼런스 스퍼를 가지며 스위치축전기 루프 필터와 소스 스위치 전하 펌프를 이용한 PLL 을 제안한다. 제안된 PLL 은 레퍼런스 스퍼의 성능을 위해 넓은 컨트롤 전압의 범위 동안 전류의 오차를 줄여주고 전하 공유 효과를 줄여주는 하나의 조절 가능한 전하 펌프를 사용하였다. 저항의 온도, 공급 전압, 공정 변화에 따른 민감도를 낮추기 위해 스위치 축전기 루프 필터가 사용되었다. 다양한 인터페이스 표준을 지원하기 위해 제안하는 PLL 은 넓은 주파수 범위를 지원하고 낮은 RMS jitter 와 낮은 레퍼런스 스퍼를 갖는다. 스위치 축전기 루프 필터와 소스 스위치 전하 펌프의 동작 원리에 대해 분석하였다. 40 nm CMOS 공정으로 제작되었으며, 제안된 회로는 quarter-rate 송신기를 위해 4 개의 phase 를 만들어내며 750 MHz 의 레퍼런스 클락을 이용하여 12 GHz 에서 6.35 mW 의 power 를 소모하고 0.008mm2 의 유효 면적을 차지하고 10 kHz 부터 100 MHz 까지 적분했을 때의 RMS jitter 값은 244.8fs 이다. 제안하는 PLL 은 -244.2 dB 의 FoM, 0.53 mW/GHz 의 power 효율을 달성했으며 레퍼런스 스퍼는 -60.3 dBc 이다CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 3 CHAPTER 2 BACKGROUNDS 4 2.1 CLOCK GENERATION IN SERIAL LINK 4 2.2 PLL BUILDING BLOCKS 6 2.2.1 OVERVIEW 6 2.2.2 PHASE FREQUENCY DETECTOR 7 2.2.3 CHARGE PUMP AND LOOP FILTER 9 2.2.4 VOLTAGE CONTROLLED OSCILLATOR 10 2.2.5 FREQUENCY DIVIDER 13 2.3 PLL LOOP ANALYSIS 15 CHAPTER 3 PLL WITH SWITCHED CAPACITOR LOOP FILTER AND SOURCE SWITCHED CHARGE PUMP 19 3.1 DESIGN CONSIDERATION 19 3.2 PROPOSED ARCHITECTURE 21 3.3 CIRCUIT IMPLEMENTATION 23 3.3.1 PHASE FREQUENCY DETECTOR 23 3.3.2 SOURCE SWITCHED CHARGE PUMP 26 3.3.3 SWITCHED CAPACITOR LOOP FILTER 30 3.3.4 VOLTAGE CONTROLLED OSCILLATOR 35 3.3.5 POST VCO AMPLIFIER 39 3.3.6 FREQUENCY DIVIDER 40 CHAPTER 4 MEASUREMENT RESULTS 43 4.1 CHIP PHOTOMICROGRAPH 43 4.2 MEASUREMENT SETUP 45 4.3 MEASURED PHASE NOISE AND REFERENCE SPUR 47 4.4 PERFORMANCE SUMMARY 50 CHAPTER 5 CONCLUSION 52 BIBLIOGRAPHY 53 초 록 58석

    Hybrid HVDC for supply of power to offshore oil platforms

    Get PDF
    A HVDC hybrid system, comprising a line commutated thyristor HVDC converter and a STATCOM, is proposed in this paper for supplying power to offshore oil platforms that do not have their own generation. The proposed system combines the robust performance, low capital cost and low power loss of a line commutated HVDC converter, with the fast dynamic performance of an equivalent VSC Transmission system. The paper describes the principles and control strategies of the proposed system. PSCAD/EMTDC simulations are presented to demonstrate the robust performance of the system using case studies of various operating conditions such as black-start, load perturbations, AC fault conditions and disturbance caused by the starting of large local induction machines

    Insights into dynamic tuning of magnetic-resonant wireless power transfer receivers based on switch-mode gyrators

    Get PDF
    Magnetic-resonant wireless power transfer (WPT) has become a reliable contactless source of power for a wide range of applications. WPT spans different power levels ranging from low-power implantable devices up to high-power electric vehicles (EV) battery charging. The transmission range and efficiency of WPT have been reasonably enhanced by resonating the transmitter and receiver coils at a common frequency. Nevertheless, matching between resonance in the transmitter and receiver is quite cumbersome, particularly in single-transmitter multi-receiver systems. The resonance frequency in transmitter and receiver tank circuits has to be perfectly matched, otherwise power transfer capability is greatly degraded. This paper discusses the mistuning effect of parallel-compensated receivers, and thereof a novel dynamic frequency tuning method and related circuit topology and control is proposed and characterized in the system application. The proposed method is based on the concept of switch-mode gyrator emulating variable lossless inductors oriented to enable self-tunability in WPT receiversPeer ReviewedPostprint (published version

    A 0.1–5.0 GHz flexible SDR receiver with digitally assisted calibration in 65 nm CMOS

    Get PDF
    © 2017 Elsevier Ltd. All rights reserved.A 0.1–5.0 GHz flexible software-defined radio (SDR) receiver with digitally assisted calibration is presented, employing a zero-IF/low-IF reconfigurable architecture for both wideband and narrowband applications. The receiver composes of a main-path based on a current-mode mixer for low noise, a high linearity sub-path based on a voltage-mode passive mixer for out-of-band rejection, and a harmonic rejection (HR) path with vector gain calibration. A dual feedback LNA with “8” shape nested inductor structure, a cascode inverter-based TCA with miller feedback compensation, and a class-AB full differential Op-Amp with Miller feed-forward compensation and QFG technique are proposed. Digitally assisted calibration methods for HR, IIP2 and image rejection (IR) are presented to maintain high performance over PVT variations. The presented receiver is implemented in 65 nm CMOS with 5.4 mm2 core area, consuming 9.6–47.4 mA current under 1.2 V supply. The receiver main path is measured with +5 dB m/+5dBm IB-IIP3/OB-IIP3 and +61dBm IIP2. The sub-path achieves +10 dB m/+18dBm IB-IIP3/OB-IIP3 and +62dBm IIP2, as well as 10 dB RF filtering rejection at 10 MHz offset. The HR-path reaches +13 dB m/+14dBm IB-IIP3/OB-IIP3 and 62/66 dB 3rd/5th-order harmonic rejection with 30–40 dB improvement by the calibration. The measured sensitivity satisfies the requirements of DVB-H, LTE, 802.11 g, and ZigBee.Peer reviewedFinal Accepted Versio

    Power electronics options for large wind farm integration : VSC-based HVDC transmission

    Get PDF
    This paper describes the use of voltage source converter based HVDC transmission (VSC transmission) system for grid integration of large wind farms over long distance. The wind farms can be based on either doubly-fed induction generator (DFIG) or fixed speed induction generator (FSIG). The paper describes the operation principles and control strategies of the proposed system. Automatic power balancing during network AC fault is achieved without communication between the two converters. PSCAD/EMTDC simulations are presented to demonstrate the robust performance and to validate the proposed system during various operating conditions such as variations of generation and AC fault conditions. The proposed VSC transmission system has technical and economic advantages over a conventional AC connection for integrating large wind farms over long distanc
    corecore