1,268 research outputs found

    Appearance Preserving Rendering of Out-of-Core Polygon and NURBS Models

    Get PDF
    In Computer Aided Design (CAD) trimmed NURBS surfaces are widely used due to their flexibility. For rendering and simulation however, piecewise linear representations of these objects are required. A relatively new field in CAD is the analysis of long-term strain tests. After such a test the object is scanned with a 3d laser scanner for further processing on a PC. In all these areas of CAD the number of primitives as well as their complexity has grown constantly in the recent years. This growth is exceeding the increase of processor speed and memory size by far and posing the need for fast out-of-core algorithms. This thesis describes a processing pipeline from the input data in the form of triangular or trimmed NURBS models until the interactive rendering of these models at high visual quality. After discussing the motivation for this work and introducing basic concepts on complex polygon and NURBS models, the second part of this thesis starts with a review of existing simplification and tessellation algorithms. Additionally, an improved stitching algorithm to generate a consistent model after tessellation of a trimmed NURBS model is presented. Since surfaces need to be modified interactively during the design phase, a novel trimmed NURBS rendering algorithm is presented. This algorithm removes the bottleneck of generating and transmitting a new tessellation to the graphics card after each modification of a surface by evaluating and trimming the surface on the GPU. To achieve high visual quality, the appearance of a surface can be preserved using texture mapping. Therefore, a texture mapping algorithm for trimmed NURBS surfaces is presented. To reduce the memory requirements for the textures, the algorithm is modified to generate compressed normal maps to preserve the shading of the original surface. Since texturing is only possible, when a parametric mapping of the surface - requiring additional memory - is available, a new simplification and tessellation error measure is introduced that preserves the appearance of the original surface by controlling the deviation of normal vectors. The preservation of normals and possibly other surface attributes allows interactive visualization for quality control applications (e.g. isophotes and reflection lines). In the last part out-of-core techniques for processing and rendering of gigabyte-sized polygonal and trimmed NURBS models are presented. Then the modifications necessary to support streaming of simplified geometry from a central server are discussed and finally and LOD selection algorithm to support interactive rendering of hard and soft shadows is described

    Towards automation of forensic facial reconstruction

    Get PDF
    Forensic facial reconstruction is a blend of art and science thus computerizing the process leads to numerous solutions. However, complete automation remains a challenge. This research concentrates on automating the first phase of forensic facial reconstruction which is automatic landmark detection by model fitting and extraction of feature points. Detection of landmarks is a challenging task since the skull orientation in a 3D scanned data cloud is generally arbitrary and unknown. To address the issue, well defined skull and mandible models with known geometric structure, features and orientation are (1) aligned and (2) fit to the scanned data. After model fitting is complete, landmarks can be extracted, within reasonable tolerance, from the dataset. Several methods exist for automatic registration (alignment); however, most suffer ambiguity or require interaction to manage symmetric 3D objects. A new alternative 3D model to data registration technique is introduced which works successfully for both symmetric and non-symmetric objects. It takes advantage of the fact that the model and data have similar shape and known geometric features. Therefore, a similar canonical frame of reference can be developed for both model and data. Once the canonical frame of reference is defined, the model can be easily aligned to data by a euclidian transformation of its coordinate system. Once aligned, the model is scaled and deformed globally to accommodate the overall size the object and bring the model in closer proximity to the data. Lastly, the model is deformed locally to better fit the scanned data. With fitting completed, landmark locations on the model can be utilized to isolate and select corresponding landmarks in the dataset. The registration, fitting and landmark detection techniques were applied to a set of six mandible and three skull body 3D scanned datasets. Results indicate the canonical axes formulation is a good candidate for automatic registration of complex 3D objects. The alternate approach posed for deformation and surface fitting of datasets also shows promise for landmark detection when using well constructed NURBS models. Recommendations are provided for addressing the algorithms limitations and to improve its overall performance

    Evolutionary structural pptimisation based on boundary element representation of b-spline geometry

    Get PDF
    Evolutionary Structural Optimisation (ESO) has become a well-established technique for determining the optimum shape and topology of a structure given a set of loads and constraints. The basic ESO concept that the optimum topology design evolves by slow removal and addition of material has matured over the last ten years. Nevertheless, the development of the method has almost exclusively considered finite elements (FE) as the approach for providing stress solutions. This thesis presents an ESO approach based on the boundary element method. Non-uniform rational B-splines (NURBS) are used to define the geometry of the component and, since the shape of these splines is governed by a set of control points, use can be made of the locations of these control points as design variables. The developed algorithm creates internal cavities to accomplish topology changes. Cavities are also described by NURBS and so they have similar behaviour to the outside boundary. Therefore, both outside and inside are optimised at the same time. The optimum topologies evolve allowing cavities to merge between each other and to their closest outer boundary. Two-dimensional structural optimisation is investigated in detail exploring multi-load case and multi-criteria optimisation. The algorithm is also extended to three-dimensional optimisation, in which promising preliminary results are obtained. It is shown that this approach overcomes some of the drawbacks inherent in traditional FE-based approaches, and naturally provides accurate stress solutions on smooth boundary representations at each iteration

    A survey of parametric modelling methods for designing the head of a high-speed train

    Get PDF
    With the continuous increase of the running speed, the head shape of the high-speed train (HST) turns out to be a critical factor for further speed boost. In order to cut down the time used in the HST head design and improve the modelling efficiency, various parametric modelling methods have been widely applied in the optimization design of the HST head to obtain an optimal head shape so that the aerodynamic effect acting on the head of HSTs can be reduced and more energy can be saved. This paper reviews these parametric modelling methods and classifies them into four categories: 2D, 3D, CATIA-based, and mesh deformation-based parametric modelling methods. Each of the methods is introduced, and the advantages and disadvantages of these methods are identified. The simulation results are presented to demonstrate that the aerodynamic performance of the optimal models constructed by these parametric modelling methods has been improved when compared with numerical calculation results of the original models or the prototype models of running trains. Since different parametric modelling methods used different original models and optimization methods, few publications could be found which compare the simulation results of the aerodynamic performance among different parametric modelling methods. In spite of this, these parametric modelling methods indicate more local shape details will lead to more accurate simulation results, and fewer design variables will result in higher computational efficiency. Therefore, the ability of describing more local shape details with fewer design variables could serve as a main specification to assess the performance of various parametric modelling methods. The future research directions may concentrate on how to improve such ability

    Determination of suitable values for parameters governing B-spline based evolutionary structural optimisation using the boundary element method

    Get PDF
    The basic evolutionary structural optimisation concept (ESO) has been developed for several years. Recently, the first ESO algorithm based on the boundary element method (BEM) has been presented. In this thesis, this algorithm is used for the 2D shape optimisation. The aim is to develop a greater understanding of the role of certain governing parameters that drive the optimisation using this algorithm, and to make recommendations as to appropriate values of these parameters that give rise to good optimal solutions most efficiently. Two problems, a short cantilever beam and a fillet, are selected as test cases in this work. By using a wide range of numerical tests, the performance of the optimisation has been evaluated using a variety of methods including mean performance analysis and multi-objective optimisation approaches using Pareto curves and weighted sums. Recommendations are made as to appropriate values of these parameters that give rise to good optimal solutions most efficiently. Sensitivity analysis is another important method in engineering design. In this work a new algorithm to undertake a sensitivity analysis has been developed and used in a small number of investigations for boundary element structural optimisation process. ESO is selected when computational efficiency is thought the most important consideration, since it can reach the optimum in fewer iterations and lower run-time compared with sensitivity analysis in structural optimisation

    Rendering Curved Triangles on the GPU

    Get PDF
    This Thesis presents a new approach to render triangular BĂ©zier patches in real time. The goal is to achieve a very good visual quality, avoid artifacts in the silhouette, and get in nite detail. Our approach consists in a ray casting technique to render tri- angular B ezier patches in real time. It is based on previous work explained in this document to implement a fast ray-surface intersec- tion technique. This previous work consists in adapting Newton's method to implement the intersections achieving interactive framer- ates ray casting di erent surfaces. The main contributions of our approach are adapting New- ton's method to perform intersections with triangular bicubic B ezier patches and implementing it in GPU to optimize performance using graphics hardware. Finally, we also contribute adapting the normal mapping tech- nique to shade the models and, thus, achieve even greater detail

    Road Estimation Using GPS Traces and Real Time Kinematic Data

    Get PDF
    Advance Driver Assistance System (ADAS) are becoming the main issue in today’s automotive industry. The new generation of ADAS aims at focusing on more details and obtaining more accuracy. To achieve this objective, the research and development parts of the automobile industry intend to utilize Global Positioning System (GPS) by integrating it with other existing tools in ADAS. There are several driving assistance systems which are served by a digital map as a primary or a secondary sensor. The traditional techniques of digital map generation are expensive and time consuming and require extensive manual effort. Therefore, having frequently updated maps is an issue. Furthermore, the existing commercial digital maps are not highly accurate. This Master thesis presents several algorithms for automatically converting raw Universal Serial Bus (USB)-GPS and Real Time Kinematic (RTK) GPS traces into a routable road network. The traces are gathered by driving 20 times on a highway. This work begins by pruning raw GPS traces using four different algorithms. The first step tries to minimize the number of outliers. After the traces are smoothed, they tend to consolidate into smooth paths. So in order to merge all 20 trips together and estimate the road network a Trace Merging algorithm is applied. Finally, a Non-Uniform Rational B-Spline (NURBS) curve is implemented as an approximation curve to smooth the road shape and decrease the effect of noisy data further. Since the RTK-GPS receiver provides highly accurate data, the curve resulted from its GPS data is the most sufficient road shape. Therefore, it is used as a ground truth to compare the result of each pruning algorithm based on data from USB-GPS. Lastly, the results of this work are demonstrated and a quality evaluation is done for all methods
    • …
    corecore