842 research outputs found

    GPS Anomaly Detection And Machine Learning Models For Precise Unmanned Aerial Systems

    Get PDF
    The rapid development and deployment of 5G/6G networks have brought numerous benefits such as faster speeds, enhanced capacity, improved reliability, lower latency, greater network efficiency, and enablement of new applications. Emerging applications of 5G impacting billions of devices and embedded electronics also pose cyber security vulnerabilities. This thesis focuses on the development of Global Positioning Systems (GPS) Based Anomaly Detection and corresponding algorithms for Unmanned Aerial Systems (UAS). Chapter 1 provides an overview of the thesis background and its objectives. Chapter 2 presents an overview of the 5G architectures, their advantages, and potential cyber threat types. Chapter 3 addresses the issue of GPS dropouts by taking the use case of the Dallas-Fort Worth (DFW) airport. By analyzing data from surveillance drones in the (DFW) area, its message frequency, and statistics on time differences between GPS messages were examined. Chapter 4 focuses on modeling and detecting false data injection (FDI) on GPS. Specifically, three scenarios, including Gaussian noise injection, data duplication, data manipulation are modeled. Further, multiple detection schemes that are Clustering-based and reinforcement learning techniques are deployed and detection accuracy were investigated. Chapter 5 shows the results of Chapters 3 and 4. Overall, this research provides a categorization and possible outlier detection to minimize the GPS interference for UAS enhancing the security and reliability of UAS operations

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Big Data Analytics for Complex Systems

    Get PDF
    The evolution of technology in all fields led to the generation of vast amounts of data by modern systems. Using data to extract information, make predictions, and make decisions is the current trend in artificial intelligence. The advancement of big data analytics tools made accessing and storing data easier and faster than ever, and machine learning algorithms help to identify patterns in and extract information from data. The current tools and machines in health, computer technologies, and manufacturing can generate massive raw data about their products or samples. The author of this work proposes a modern integrative system that can utilize big data analytics, machine learning, super-computer resources, and industrial health machines’ measurements to build a smart system that can mimic the human intelligence skills of observations, detection, prediction, and decision-making. The applications of the proposed smart systems are included as case studies to highlight the contributions of each system. The first contribution is the ability to utilize big data revolutionary and deep learning technologies on production lines to diagnose incidents and take proper action. In the current digital transformational industrial era, Industry 4.0 has been receiving researcher attention because it can be used to automate production-line decisions. Reconfigurable manufacturing systems (RMS) have been widely used to reduce the setup cost of restructuring production lines. However, the current RMS modules are not linked to the cloud for online decision-making to take the proper decision; these modules must connect to an online server (super-computer) that has big data analytics and machine learning capabilities. The online means that data is centralized on cloud (supercomputer) and accessible in real-time. In this study, deep neural networks are utilized to detect the decisive features of a product and build a prediction model in which the iFactory will make the necessary decision for the defective products. The Spark ecosystem is used to manage the access, processing, and storing of the big data streaming. This contribution is implemented as a closed cycle, which for the best of our knowledge, no one in the literature has introduced big data analysis using deep learning on real-time applications in the manufacturing system. The code shows a high accuracy of 97% for classifying the normal versus defective items. The second contribution, which is in Bioinformatics, is the ability to build supervised machine learning approaches based on the gene expression of patients to predict proper treatment for breast cancer. In the trial, to personalize treatment, the machine learns the genes that are active in the patient cohort with a five-year survival period. The initial condition here is that each group must only undergo one specific treatment. After learning about each group (or class), the machine can personalize the treatment of a new patient by diagnosing the patients’ gene expression. The proposed model will help in the diagnosis and treatment of the patient. The future work in this area involves building a protein-protein interaction network with the selected genes for each treatment to first analyze the motives of the genes and target them with the proper drug molecules. In the learning phase, a couple of feature-selection techniques and supervised standard classifiers are used to build the prediction model. Most of the nodes show a high-performance measurement where accuracy, sensitivity, specificity, and F-measure ranges around 100%. The third contribution is the ability to build semi-supervised learning for the breast cancer survival treatment that advances the second contribution. By understanding the relations between the classes, we can design the machine learning phase based on the similarities between classes. In the proposed research, the researcher used the Euclidean matrix distance among each survival treatment class to build the hierarchical learning model. The distance information that is learned through a non-supervised approach can help the prediction model to select the classes that are away from each other to maximize the distance between classes and gain wider class groups. The performance measurement of this approach shows a slight improvement from the second model. However, this model reduced the number of discriminative genes from 47 to 37. The model in the second contribution studies each class individually while this model focuses on the relationships between the classes and uses this information in the learning phase. Hierarchical clustering is completed to draw the borders between groups of classes before building the classification models. Several distance measurements are tested to identify the best linkages between classes. Most of the nodes show a high-performance measurement where accuracy, sensitivity, specificity, and F-measure ranges from 90% to 100%. All the case study models showed high-performance measurements in the prediction phase. These modern models can be replicated for different problems within different domains. The comprehensive models of the newer technologies are reconfigurable and modular; any newer learning phase can be plugged-in at both ends of the learning phase. Therefore, the output of the system can be an input for another learning system, and a newer feature can be added to the input to be considered for the learning phase

    Machine learning based anomaly detection for industry 4.0 systems.

    Get PDF
    223 p.This thesis studies anomaly detection in industrial systems using technologies from the Fourth Industrial Revolution (4IR), such as the Internet of Things, Artificial Intelligence, 3D Printing, and Augmented Reality. The goal is to provide tools that can be used in real-world scenarios to detect system anomalies, intending to improve production and maintenance processes. The thesis investigates the applicability and implementation of 4IR technology architectures, AI-driven machine learning systems, and advanced visualization tools to support decision-making based on the detection of anomalies. The work covers a range of topics, including the conception of a 4IR system based on a generic architecture, the design of a data acquisition system for analysis and modelling, the creation of ensemble supervised and semi-supervised models for anomaly detection, the detection of anomalies through frequency analysis, and the visualization of associated data using Visual Analytics. The results show that the proposed methodology for integrating anomaly detection systems in new or existing industries is valid and that combining 4IR architectures, ensemble machine learning models, and Visual Analytics tools significantly enhances theanomaly detection processes for industrial systems. Furthermore, the thesis presents a guiding framework for data engineers and end-users

    Deep Reinforcement Learning for Vehicular Edge Computing: An Intelligent Offloading System

    Get PDF
    The development of smart vehicles brings drivers and passengers a comfortable and safe environment. Various emerging applications are promising to enrich users' traveling experiences and daily life. However, how to execute computing-intensive applications on resource-constrained vehicles still faces huge challenges. In this article, we construct an intelligent offloading system for vehicular edge computing by leveraging deep reinforcement learning. First, both the communication and computation states are modelled by finite Markov chains. Moreover, the task scheduling and resource allocation strategy is formulated as a joint optimization problem to maximize users' Quality of Experience (QoE). Due to its complexity, the original problem is further divided into two sub-optimization problems. A two-sided matching scheme and a deep reinforcement learning approach are developed to schedule offloading requests and allocate network resources, respectively. Performance evaluations illustrate the effectiveness and superiority of our constructed system

    Deep learning and multivariate time series for cheat detection in video games

    Get PDF
    Online video games drive a multi-billion dollar industry dedicated to maintaining a competitive and enjoyable experience for players. Traditional cheat detection systems struggle when facing new exploits or sophisticated fraudsters. More advanced solutions based on machine learning are more adaptive but rely heavily on in-game data, which means that each game has to develop its own cheat detection system. In this work, we propose a novel approach to cheat detection that doesn't require in-game data. Firstly, we treat the multimodal interactions between the player and the platform as multivariate time series. We then use convolutional neural networks to classify these time series as corresponding to legitimate or fraudulent gameplay. Our models achieve an average accuracy of respectively 99.2% and 98.9% in triggerbot and aimbot (two widespread cheats), in an experiment to validate the system's ability to detect cheating in players never seen before. Because this approach is based solely on player behavior, it can be applied to any game or input method, and even various tasks related to modeling human activity.- (undefined

    Data Quality Management in Large-Scale Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPSs) are cross-domain, multi-model, advance information systems that play a significant role in many large-scale infrastructure sectors of smart cities public services such as traffic control, smart transportation control, and environmental and noise monitoring systems. Such systems, typically, involve a substantial number of sensor nodes and other devices that stream and exchange data in real-time and usually are deployed in uncontrolled, broad environments. Thus, unexpected measurements may occur due to several internal and external factors, including noise, communication errors, and hardware failures, which may compromise these systems quality of data and raise serious concerns related to safety, reliability, performance, and security. In all cases, these unexpected measurements need to be carefully interpreted and managed based on domain knowledge and computational models. Therefore, in this research, data quality challenges were investigated, and a comprehensive, proof of concept, data quality management system was developed to tackle unaddressed data quality challenges in large-scale CPSs. The data quality management system was designed to address data quality challenges associated with detecting: sensor nodes measurement errors, sensor nodes hardware failures, and mismatches in sensor nodes spatial and temporal contextual attributes. Detecting sensor nodes measurement errors associated with the primary data quality dimensions of accuracy, timeliness, completeness, and consistency in large-scale CPSs were investigated using predictive and anomaly analysis models via utilising statistical and machine-learning techniques. Time-series clustering techniques were investigated as a feasible mean for detecting long-segmental outliers as an indicator of sensor nodes’ continuous halting and incipient hardware failures. Furthermore, the quality of the spatial and temporal contextual attributes of sensor nodes observations was investigated using timestamp analysis techniques. The different components of the data quality management system were tested and calibrated using benchmark time-series collected from a high-quality, temperature sensor network deployed at the University of East London. Furthermore, the effectiveness of the proposed data quality management system was evaluated using a real-world, large-scale environmental monitoring network consisting of more than 200 temperature sensor nodes distributed around London. The data quality management system achieved high accuracy detection rate using LSTM predictive analysis technique and anomaly detection associated with DBSCAN. It successfully identified timeliness and completeness errors in sensor nodes’ measurements using periodicity analysis combined with a rule engine. It achieved up to 100% accuracy in detecting potentially failed sensor nodes using the characteristic-based time-series clustering technique when applied to two days or longer time-series window. Timestamp analysis was adopted effectively for evaluating the quality of temporal and spatial contextual attributes of sensor nodes observations, but only within CPS applications in which using gateway modules is possible
    • …
    corecore