24 research outputs found

    Evaluating technologies and techniques for transitioning hydrodynamics applications to future generations of supercomputers

    Get PDF
    Current supercomputer development trends present severe challenges for scientific codebases. Moore’s law continues to hold, however, power constraints have brought an end to Dennard scaling, forcing significant increases in overall concurrency. The performance imbalance between the processor and memory sub-systems is also increasing and architectures are becoming significantly more complex. Scientific computing centres need to harness more computational resources in order to facilitate new scientific insights and maintaining their codebases requires significant investments. Centres therefore have to decide how best to develop their applications to take advantage of future architectures. To prevent vendor "lock-in" and maximise investments, achieving portableperformance across multiple architectures is also a significant concern. Efficiently scaling applications will be essential for achieving improvements in science and the MPI (Message Passing Interface) only model is reaching its scalability limits. Hybrid approaches which utilise shared memory programming models are a promising approach for improving scalability. Additionally PGAS (Partitioned Global Address Space) models have the potential to address productivity and scalability concerns. Furthermore, OpenCL has been developed with the aim of enabling applications to achieve portable-performance across a range of heterogeneous architectures. This research examines approaches for achieving greater levels of performance for hydrodynamics applications on future supercomputer architectures. The development of a Lagrangian-Eulerian hydrodynamics application is presented together with its utility for conducting such research. Strategies for improving application performance, including PGAS- and hybrid-based approaches are evaluated at large node-counts on several state-of-the-art architectures. Techniques to maximise the performance and scalability of OpenMP-based hybrid implementations are presented together with an assessment of how these constructs should be combined with existing approaches. OpenCL is evaluated as an additional technology for implementing a hybrid programming model and improving performance-portability. To enhance productivity several tools for automatically hybridising applications and improving process-to-topology mappings are evaluated. Power constraints are starting to limit supercomputer deployments, potentially necessitating the use of more energy efficient technologies. Advanced processor architectures are therefore evaluated as future candidate technologies, together with several application optimisations which will likely be necessary. An FPGA-based solution is examined, including an analysis of how effectively it can be utilised via a high-level programming model, as an alternative to the specialist approaches which currently limit the applicability of this technology

    EuroEXA - D2.6: Final ported application software

    Get PDF
    This document describes the ported software of the EuroEXA applications to the single CRDB testbed and it discusses the experiences extracted from porting and optimization activities that should be actively taken into account in future redesign and optimization. This document accompanies the ported application software, found in the EuroEXA private repository (https://github.com/euroexa). In particular, this document describes the status of the software for each of the EuroEXA applications, sketches the redesign and optimization strategy for each application, discusses issues and difficulties faced during the porting activities and the relative lesson learned. A few preliminary evaluation results have been presented, however the full evaluation will be discussed in deliverable 2.8

    Plasma Physics Computations on Emerging Hardware Architectures

    Get PDF
    This thesis explores the potential of emerging hardware architectures to increase the impact of high performance computing in fusion plasma physics research. For next generation tokamaks like ITER, realistic simulations and data-processing tasks will become significantly more demanding of computational resources than current facilities. It is therefore essential to investigate how emerging hardware such as the graphics processing unit (GPU) and field-programmable gate array (FPGA) can provide the required computing power for large data-processing tasks and large scale simulations in plasma physics specific computations. The use of emerging technology is investigated in three areas relevant to nuclear fusion: (i) a GPU is used to process the large amount of raw data produced by the synthetic aperture microwave imaging (SAMI) plasma diagnostic, (ii) the use of a GPU to accelerate the solution of the Bateman equations which model the evolution of nuclide number densities when subjected to neutron irradiation in tokamaks, and (iii) an FPGA-based dataflow engine is applied to compute massive matrix multiplications, a feature of many computational problems in fusion and more generally in scientific computing. The GPU data processing code for SAMI provides a 60x acceleration over the previous IDL-based code, enabling inter-shot analysis in future campaigns and the data-mining (and therefore analysis) of stored raw data from previous MAST campaigns. The feasibility of porting the whole Bateman solver to a GPU system is demonstrated and verified against the industry standard FISPACT code. Finally a dataflow approach to matrix multiplication is shown to provide a substantial acceleration compared to CPU-based approaches and, whilst not performing as well as a GPU for this particular problem, is shown to be much more energy efficient. Emerging hardware technologies will no doubt continue to provide a positive contribution in terms of performance to many areas of fusion research and several exciting new developments are on the horizon with tighter integration of GPUs and FPGAs with their host central processor units. This should not only improve performance and reduce data transfer bottlenecks, but also allow more user-friendly programming tools to be developed. All of this has implications for ITER and beyond where emerging hardware technologies will no doubt provide the key to delivering the computing power required to handle the large amounts of data and more realistic simulations demanded by these complex systems

    マルチレベル並列化とアプリケーション指向データレイアウトを用いるハードウェアアクセラレータの設計と実装

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 稲葉 雅幸, 東京大学教授 須田 礼仁, 東京大学教授 五十嵐 健夫, 東京大学教授 山西 健司, 東京大学准教授 稲葉 真理, 東京大学講師 中山 英樹University of Tokyo(東京大学

    Acceleration of Astrophysical Simulations with Special Hardware

    Get PDF
    This work presents the raceSPH and raceGRAV accelerator libraries, designed to interface astrophysical simulations with special-purpose hardware. The raceSPH focuses on the acceleration of Smoothed Particle Hydrodynamics (SPH), a method for approximating force interactions in fluid dynamics. Accelerators used range from vectorizing units on the microprocessors to Field Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs), and speed-ups range from 1.2x to 28x when measured in a synthetic benchmark and from 6x to 19x when used inside astrophysical simulations, for a total wallclock time speed-up of 1.6x to 2.4x, close to the theoretical maximum of 2.5x. The raceGRAV library computes gravitational force with high accuracy and is designed to complement the GRAPE accelerator. In direct summation tests, it provides performance on par with vectorizing units of the processor and comparable to the GRAPE-6 when normalized against number of pipelines. For the development of these libraries, a set of supporting modules were developed, including a PCI driver for modern Linux kernel versions, an MPRACE library for the communication with FPGA boards and a bu er management library for the efficient handling of data transfers

    筑波大学計算科学研究センター 平成30年度 年次報告書

    Get PDF
    まえがき ...... 21 センター組織と構成員 ...... 42 平成30 年度の活動状況 ...... 83 各研究部門の報告 ...... 15I. 素粒子物理研究部門 ...... 15II. 宇宙物理研究部門 ....... 40III. 原子核物理研究部門 ...... 65IV. 量子物性研究部門 ...... 83V. 生命科学研究部門 ...... 110 V-1. 生命機能情報分野 ...... 110 V-2. 分子進化分野 ...... 125VI. 地球環境研究部門 ...... 140VII. 高性能計算システム研究部門 ...... 155VIII. 計算情報学研究部門 ...... 207 VIII-1. データ基盤分野 ...... 207 VIII-2. 計算メディア分野 ...... 22

    FIAS Scientific Report 2011

    Get PDF
    In the year 2010 the Frankfurt Institute for Advanced Studies has successfully continued to follow its agenda to pursue theoretical research in the natural sciences. As stipulated in its charter, FIAS closely collaborates with extramural research institutions, like the Max Planck Institute for Brain Research in Frankfurt and the GSI Helmholtz Center for Heavy Ion Research, Darmstadt and with research groups at the science departments of Goethe University. The institute also engages in the training of young researchers and the education of doctoral students. This Annual Report documents how these goals have been pursued in the year 2010. Notable events in the scientific life of the Institute will be presented, e.g., teaching activities in the framework of the Frankfurt International Graduate School for Science (FIGSS), colloquium schedules, conferences organized by FIAS, and a full bibliography of publications by authors affiliated with FIAS. The main part of the Report consists of short one-page summaries describing the scientific progress reached in individual research projects in the year 2010..

    Relajaciones de ejecución definidas por el usuario para la mejora de la programabilidad en computación paralela de altas prestaciones

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 22-11-2019This thesis proposes the development and implementation of a new programming model basedon execution relaxations, and focused on High-Performance Parallel Computing. Specifically,the main goals of the thesis are:1. Advocate a development methodology in which users define the basic computing units(tasks), together with a set of relaxations in, possibly, multiple dimensions. These relaxationswill be translated, at execution time, into expanded (and complex) scheduling opportunitiesdepending on the underlying architectural features, yielding improvements in termsof desired output metrics (e.g., performance or energy consumption).2. Abstract away users from the complexity of the underlying heterogeneous hardware, delegatingthe proper exploitation of expanded scheduling choices to a system software component(typically referred as a runtime). This piece of software, armed with knowledge fromstatic architectural characteristics and dynamic status of the hardware at execution time,will exploit those combinations considered optimal among those relaxations proposed bythe user for each task ready for execution.3. Extend this abstraction in order to describe both computing systems, by means of executor/ allocator hierarchies that describe the heterogeneous computing architecture, and applications,in terms of sets of interdependent tasks. In addition, the relations between executorsand tasks are categorized into a new task-executor taxonomy, which motivates ambiguityfreeHPC programming frontends based on the STSE, Single Task - Single Executor classification,distinguished from fully-automated runtime backends.4. Propose a new programming model (STEEL) based on previous ideas, that gathers featuresconsidered to be basic for future task-based programming models, namely: performance,composability, expressivity and hard-to-misuse interfaces.5. Specify an API to support the STEEL programming model, and a runtime implementationleveraging techniques and programming paradigms supported by modern C++, illustratingits flexibility, ease of use and performance impact by means of simple use cases and examples.Hence, the proposed methodology stands for a clear and strict separation of concerns betweenthe involved actors in a parallel executions: user / codes and underlying hardware. This kind ofabstractions allows a delegation of the expert knowledge from the user toward the system software(runtime) in a systematic way, and facilitates the integration of mechanisms to automate optimizations,adapting performance to the specificities of the heterogeneous parallel architecture in whichthe code is instantiated and executed.From this perspective, the thesis designs, implements and validates mechanisms to perform aso-called complexity formalization, classifying many actions that are currently done by the userand building a framework in which these complexities can be delegated to the runtime system. Thedelegation of these decisions is already a step forward to next generation of programming modelsseeking performance, expressivity, programmability and portability...La presente tesis doctoral propone el diseño e implementación de un nuevo modelo de programación basado en relajaciones de ejecución y enfocado al ámbito de la Computación Paralela de Altas Prestaciones. Concretamente, los objetivos principales de la tesis son:1. Abogar por una metodología de desarrollo en la que el usuario define las unidades básicas de computo (tareas), junto con un conjunto de relajaciones en, posiblemente, múltiples dimensiones. Estas relajaciones se traducirán, en tiempo de ejecución, en oportunidades expandidas(y complejas) de planificación en función de la arquitectura subyacente, impactando así en métricas como rendimiento o consumo energético.2. Abstraer al usuario de la complejidad del hardware subyacente, delegando la correcta explotación de dichas posibilidades de planificación expandidas a un componente software de sistema (típicamente conocido como runtime). Dicho software, dotado de conocimiento tanto de las características estáticas de la arquitectura subyacente como del estado puntual de la misma en el momento de la ejecución, explotará las combinaciones consideradas optimas de entre las relajaciones propuestas por el usuario para cada tarea lista para set ejecutada.3. Extender dicha abstracción para describir tanto sistemas de cómputo, en forma de jerarquía de ejecutores y alojadores de memoria que en ´ultimo término describen una arquitectura de cómputo heterogénea, como aplicaciones, en forma de un conjunto de tareas interrelacionadas. Además, las relaciones entre ejecutores y tareas son clasificadas en una nueva taxonomía tarea-ejecutor, la cual motiva frontends de programación HPC sin ambigüedad basados en la clasificación STSE, Single Task - Single Executor, separada de backends runtime totalmente automatizados.4. Proponer un nuevo modelo de programación (STEEL) basado en la clasificación STSE que aglutine ciertas características consideradas básicas de cara al éxito de los futuros modelos de programación basados en tareas: rendimiento, facilidad de composición, expresividad e interfaces no permisivos ante fallos.5. Especificar una API que dé soporte al modelo de programación, así como una implementación runtime del mismo aprovechando técnicas y paradigmas soportados en el lenguaje C++ de última generación, e ilustrar su uso, flexibilidad e impacto en el rendimiento a través de ejemplos y casos de uso sencillos .La metodología que se propugna aboga por una clara y estricta separación de conceptos entre los actores básicos que componen una ejecución paralela: usuario / código y hardware subyacente. Este tipo de abstracciones permite delegar el conocimiento experto desde el usuario hacia el software de sistema, proporcionando así mecanismos para mecanizar y automatizar su optimización ,y adaptar su rendimiento a la arquitectura paralela sobre la que se instanciarán los códigos. Desde este punto de vista, la tesis diseña, implementa y valida mecanismos para llevar a cabo una formalización de la complejidad inherente a la programación paralela heterogénea, clasificando aquellas acciones que en la actualidad se llevan a cabo por parte del usuario en el proceso de desarrollo y optimización de código, y proporcionando un marco de trabajo en el que dicha complejidad puede ser delegada, de forma eficiente y consistente, a un runtime...Fac. de InformáticaTRUEunpu
    corecore