7,825 research outputs found

    Dynamic response of damaged angleplied fiber composites

    Get PDF
    The effects of low level damage induced by monotonic load, cyclic load and/or residual stresses on the vibration frequencies and damping factors of fiber composite angleplied laminates were investigated. Two different composite systems were studied - low modulus fiber and ultra high modulus fiber composites. The results obtained show that the frequencies and damping factors of angleplied laminates made from low modulus fiber composites are sensitive to low level damage while those made from ultra high modulus composites are not. Vibration tests may not be sufficiently sensitive to assess concentrated local damage in angleplied laminates. Dynamic response determined from low-velocity impact coupled with the Fast Fourier Transform and packaged in a minicomputer can be a convenient procedure for assessing low-level damage

    Technological change and regional restructuring in Boston's route 128 area

    Get PDF
    During the 1980s and early 1990s, the importance of small firm growth and industrial districts in Italy became the focus of a large number of regional development studies. According to this literature, successful industrial districts are characterized by intensive cooperation and market producer-user interaction between small and medium-sized, flexibly specialized firms (Piore and Sabel, 1984; Scott, 1988). In addition, specialized local labor markets develop which are complemented by a variety of supportive institutions and a tradition of collaboration based on trust relations (Amin and Robins, 1990; Amin and Thrift, 1995). It has also been emphasized that industrial districts are deeply embedded into the socio-institutional structures within their particular regions (Grabher, 1993). Many case studies have attempted to find evidence that the regional patterns identified in Italy are a reflection of a general trend in industrial development rather than just being historical exceptions. Silicon Valley, which is focused on high technology production, has been identified as being one such production complex similar to those in Italy (see, for instance, Hayter, 1997). However, some remarkable differences do exist in the institutional context of this region, as well as its particular social division of labor (Markusen, 1996). Even though critics, such as Amin and Robins (1990), emphasized quite early that the Italian experience could not easily be applied to other socio-cultural settings, many studies have classified other high technology regions in the U.S. as being industrial districts, such as Boston s Route 128 area. Too much attention has been paid to the performance of small and medium-sized firms and the regional level of industrial production in the ill-fated debate regarding industrial districts (Martinelli and Schoenberger, 1991). Harrison (1997) has provided substantial evidence that large firms continue to dominate the global economy. This does not, however, imply that a de-territorialization of economic growth is necessarily taking place as globalization tendencies continue (Storper, 1997; Maskell and Malmberg, 1998). In the case of Boston, it has been misleading to define its regional economy as being an industrial district. Neither have small and medium-sized firms been decisive in the development of the Route 128 area nor has the region developed a tradition of close communication between vertically-disintegrated firms (Dorfman, 1983; Bathelt, 1991a). Saxenian (1994) found that Boston s economy contrasted sharply with that of an industrial district. Specifically, the region has been dominated by large, vertically-integrated high technology firms which are reliant on proprietary technologies and autarkic firm structures. Several studies have tried to compare the development of the Route 128 region to Silicon Valley. These studies have shown that both regions developed into major 2 agglomerations of high technology industries in the post-World War II period. Due to their different traditions, structures and practices, Silicon Valley and Route 128 have followed divergent development paths which have resulted in a different regional specialization (Dorfman, 1983; Saxenian, 1985; Kenney and von Burg, 1999). In the mid 1970s, both regions were almost equally important in terms of the size of their high technology sectors. Since then, however, Silicon Valley has become more important and has now the largest agglomeration of leading-edge technologies in the U.S. (Saxenian, 1994). Saxenian (1994) argues that the superior performance of high technology industries in Silicon Valley over those in Boston is based on different organizational patterns and manufacturing cultures which are embedded in those socio-institutional traditions which are particular to each region. Despite the fact that Saxenian (1994) has been criticized for basing her conclusions on weak empirical research (i.e. Harrison, 1997; Markusen, 1998), she offers a convincing explanation as to why the development paths of both regions have differed.1 Saxenian s (1994) study does not, however, identify which structures and processes have enabled both regions to overcome economic crises. In the case of the Boston economy, high technology industries have proven that they are capable of readjusting and rejuvenating their product and process structures in such a way that further innovation and growth is stimulated. This is also exemplified by the region s recent economic development. In the late 1980s, Boston experienced an economic decline when the minicomputer industry lost its competitive basis and defense expenditures were drastically reduced. The number of high technology manufacturing jobs decreased by more than 45,000 between 1987 and 1995. By the mid 1990s, however, the regional economy began to recover. The rapidly growing software sector compensated for some of the losses experienced in manufacturing. In this paper, I aim to identify the forces behind this economic recovery. I will investigate whether high technology firms have uncovered new ways to overcome the crisis and the extent to which they have given up their focus on self-reliance and autarkic structures. The empirical findings will also be discussed in the context of the recent debate about the importance of regional competence and collective learning (Storper, 1997; Maskell and Malmberg, 1998). There is a growing body of literature which suggests that some regional economies During the 1980s and early 1990s, the importance of small firm growth and industrial districts in Italy became the focus of a large number of regional development studies. According to this literature, successful industrial districts are characterized by intensive cooperation and market producer-user interaction between small and medium-sized, flexibly specialized firms (Piore and Sabel, 1984; Scott, 1988). In addition, specialized local labor markets develop which are complemented by a variety of supportive institutions and a tradition of collaboration based on trust relations (Amin and Robins, 1990; Amin and Thrift, 1995). It has also been emphasized that industrial districts are deeply embedded into the socio-institutional structures within their particular regions (Grabher, 1993). Many case studies have attempted to find evidence that the regional patterns identified in Italy are a reflection of a general trend in industrial development rather than just being historical exceptions. Silicon Valley, which is focused on high technology production, has been identified as being one such production complex similar to those in Italy (see, for instance, Hayter, 1997). However, some remarkable differences do exist in the institutional context of this region, as well as its particular social division of labor (Markusen, 1996). Even though critics, such as Amin and Robins (1990), emphasized quite early that the Italian experience could not easily be applied to other socio-cultural settings, many studies have classified other high technology regions in the U.S. as being industrial districts, such as Boston s Route 128 area. Too much attention has been paid to the performance of small and medium-sized firms and the regional level of industrial production in the ill-fated debate regarding industrial districts (Martinelli and Schoenberger, 1991). Harrison (1997) has provided substantial evidence that large firms continue to dominate the global economy. This does not, however, imply that a de-territorialization of economic growth is necessarily taking place as globalization tendencies continue (Storper, 1997; Maskell and Malmberg, 1998). In the case of Boston, it has been misleading to define its regional economy as being an industrial district. Neither have small and medium-sized firms been decisive in the development of the Route 128 area nor has the region developed a tradition of close communication between vertically-disintegrated firms (Dorfman, 1983; Bathelt, 1991a). Saxenian (1994) found that Boston s economy contrasted sharply with that of an industrial district. Specifically, the region has been dominated by large, vertically-integrated high technology firms which are reliant on proprietary technologies and autarkic firm structures. Several studies have tried to compare the development of the Route 128 region to Silicon Valley. These studies have shown that both regions developed into major 2 agglomerations of high technology industries in the post-World War II period. Due to their different traditions, structures and practices, Silicon Valley and Route 128 have followed divergent development paths which have resulted in a different regional specialization (Dorfman, 1983; Saxenian, 1985; Kenney and von Burg, 1999). In the mid 1970s, both regions were almost equally important in terms of the size of their high technology sectors. Since then, however, Silicon Valley has become more important and has now the largest agglomeration of leading-edge technologies in the U.S. (Saxenian, 1994). Saxenian (1994) argues that the superior performance of high technology industries in Silicon Valley over those in Boston is based on different organizational patterns and manufacturing cultures which are embedded in those socio-institutional traditions which are particular to each region. Despite the fact that Saxenian (1994) has been criticized for basing her conclusions on weak empirical research (i.e. Harrison, 1997; Markusen, 1998), she offers a convincing explanation as to why the development paths of both regions have differed.1 Saxenian s (1994) study does not, however, identify which structures and processes have enabled both regions to overcome economic crises. In the case of the Boston economy, high technology industries have proven that they are capable of readjusting and rejuvenating their product and process structures in such a way that further innovation and growth is stimulated. This is also exemplified by the region s recent economic development. In the late 1980s, Boston experienced an economic decline when the minicomputer industry lost its competitive basis and defense expenditures were drastically reduced. The number of high technology manufacturing jobs decreased by more than 45,000 between 1987 and 1995. By the mid 1990s, however, the regional economy began to recover. The rapidly growing software sector compensated for some of the losses experienced in manufacturing. In this paper, I aim to identify the forces behind this economic recovery. I will investigate whether high technology firms have uncovered new ways to overcome the crisis and the extent to which they have given up their focus on self-reliance and autarkic structures. The empirical findings will also be discussed in the context of the recent debate about the importance of regional competence and collective learning (Storper, 1997; Maskell and Malmberg, 1998). There is a growing body of literature which suggests that some regional economies an develop into learning economies which are based on intra-regional production linkages, interactive technological learning processes, flexibility and proximity (Storper, 1992; Lundvall and Johnson, 1994; Gregersen and Johnson, 1997). In the next section of this paper, I will discuss some of the theoretical issues regarding localized learning processes, learning economies and learning regions (see, also, Bathelt, 1999). I will then describe the methodology used. What follows is a brief overview of how Boston s economy has specialized in high technology production. The main part of the paper will then focus on recent trends in Boston s high technology industries. It will be shown that the high technology economy consists of different subsectors which are not tied to a single technological development path. The various subsectors are, at least partially, dependent on different forces and unrelated processes. There is, however, tentative evidence which suggests that cooperative behavior and collective learning in supplierproducer- user relations have become important factors in securing reproductivity in the regional structure. The importance of these trends will be discussed in the conclusions

    A NASA family of minicomputer systems, Appendix A

    Get PDF
    This investigation was undertaken to establish sufficient specifications, or standards, for minicomputer hardware and software to provide NASA with realizable economics in quantity purchases, interchangeability of minicomputers, software, storage and peripherals, and a uniformly high quality. The standards will define minicomputer system component types, each specialized to its intended NASA application, in as many levels of capacity as required

    Escort: A data acquisition and display system to support research testing

    Get PDF
    Primarily designed to acquire data at steady state test conditions, the system can also monitor slow transients such as those generated in moving to a new test condition. The system configuration makes use of a microcomputer at the test site which acts as a communications multiplexer between the measurement and display devices and a centrally located minicomputer. A variety of measurement and display devices are supported using a modular approach. This allows each system to be configured with the proper combination of devices to meet the specific test requirements, while still leaving the option to add special interfaces when needed. Centralization of the minicomputer improves utilization through sharing. The creation of a pool of minis to provide data acquisition and display services to a variable number of running tests also offers other important advantages

    High-speed laser anemometer system for intrarotor flow mapping in turbomachinery

    Get PDF
    A fringe-type laser anemometer with innovative features is described. The innovative features include: (1) rapid, efficient data acquisition processes, (2) detailed graphic display of data being accumulated, and (3) input laser-beam positioning that allows greater optical access to the intrarotor region. Results are presented that demonstrate the anemometer's capability in flow mapping within a transonic axial-flow compressor rotor

    Fabrication and test of digital output interface devices for gas turbine electronic controls

    Get PDF
    A program was conducted to develop an innovative digital output interface device, a digital effector with optical feedback of the fuel metering valve position, for future electronic controls for gas turbine engines. A digital effector (on-off solenoids driven directly by on-off signals from a digital electronic controller) with optical position feedback was fabricated, coupled with the fuel metering valve, and tested under simulated engine operating conditions. The testing indicated that a digital effector with optical position feedback is a suitable candidate, with proper development for future digital electronic gas turbine controls. The testing also identified several problem areas which would have to be overcome in a final production configuration

    The revolution in data gathering systems

    Get PDF
    Data acquisition systems used in NASA's wind tunnels from the 1950's through the present time are summarized as a baseline for assessing the impact of minicomputers and microcomputers on data acquisition and data processing. Emphasis is placed on the cyclic evolution in computer technology which transformed the central computer system, and finally the distributed computer system. Other developments discussed include: medium scale integration, large scale integration, combining the functions of data acquisition and control, and micro and minicomputers

    Communication Standards for Online Interchange of Library Information

    Get PDF
    published or submitted for publicatio

    Early computing and data processing in Malta

    Get PDF
    Malta has been a heavy user of computers only since the 1980s, following the availability of the personal computer. Before that date, the diffusion of computers in Malta was slow. This paper describes the supply and application of computers from the late 1960s until the early 1980s. The state of computing and the slow take-up of computers is analysed and explained. The paper concludes with an explanation for 'fake off' in the 1980s.peer-reviewe

    Efficient laser anemometer for intra-rotor flow mapping in turbomachinery

    Get PDF
    A fringe type laser anemometer is described. Features of the anemometer include; a rapid and efficient data acquisition process; a detailed real time graphic display of the data being accumulated; and input laser beam positioning that maximizes the size of the intrarotor region being mapped. Results are presented that demonstrate the anemometer's capability in flow mapping within a transonic axial flow compressor rotor. A velocity profile, derived from 30,000 measurements along 1000 sequential circumferential positions covering 20 blade passages, was obtained in 30 seconds. The use of fluorescent seed particles allowed flow measurements near the rotor hub and the casing window
    • …
    corecore