1,604 research outputs found

    Integration of a failure monitoring within a hybrid dynamic simulation environment

    Get PDF
    The complexity and the size of the industrial chemical processes induce the monitoring of a growing number of process variables. Their knowledge is generally based on the measurements of system variables and on the physico-chemical models of the process. Nevertheless this information is imprecise because of process and measurement noise. So the research ways aim at developing new and more powerful techniques for the detection of process fault. In this work, we present a method for the fault detection based on the comparison between the real system and the reference model evolution generated by the extended Kalman filter. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. It is a general object-oriented environment which provides common and reusable components designed for the development and the management of dynamic simulation of industrial systems. The use of this method is illustrated through a didactic example relating to the field of Chemical Process System Engineering

    A review of applications of fuzzy sets to safety and reliability engineering

    Get PDF
    Safety and reliability are rigorously assessed during the design of dependable systems. Probabilistic risk assessment (PRA) processes are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limited to Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event Tree Analysis (ETA). In conventional PRA, failure data about components is required for the purposes of quantitative analysis. In practice, it is not always possible to fully obtain this data due to unavailability of primary observations and consequent scarcity of statistical data about the failure of components. To handle such situations, fuzzy set theory has been successfully used in novel PRA approaches for safety and reliability evaluation under conditions of uncertainty. This paper presents a review of fuzzy set theory based methodologies applied to safety and reliability engineering, which include fuzzy FTA, fuzzy FMEA, fuzzy ETA, fuzzy Bayesian networks, fuzzy Markov chains, and fuzzy Petri nets. Firstly, we describe relevant fundamentals of fuzzy set theory and then we review applications of fuzzy set theory to system safety and reliability analysis. The review shows the context in which each technique may be more appropriate and highlights the overall potential usefulness of fuzzy set theory in addressing uncertainty in safety and reliability engineering

    Reliability assessment of manufacturing systems: A comprehensive overview, challenges and opportunities

    Get PDF
    Reliability assessment refers to the process of evaluating reliability of components or systems during their lifespan or prior to their implementation. In the manufacturing industry, the reliability of systems is directly linked to production efficiency, product quality, energy consumption, and other crucial performance indicators. Therefore, reliability plays a critical role in every aspect of manufacturing. In this review, we provide a comprehensive overview of the most significant advancements and trends in the assessment of manufacturing system reliability. For this, we also consider the three main facets of reliability analysis of cyber–physical systems, i.e., hardware, software, and human-related reliability. Beyond the overview of literature, we derive challenges and opportunities for reliability assessment of manufacturing systems based on the reviewed literature. Identified challenges encompass aspects like failure data availability and quality, fast-paced technological advancements, and the increasing complexity of manufacturing systems. In turn, the opportunities include the potential for integrating various assessment methods, and leveraging data to automate the assessment process and to increase accuracy of derived reliability models

    Quantitative and Qualitative Models for Managing Risk Interdependencies in Supply Chain

    Get PDF
    The interdependent nature of supply chain elements and events requires risk systems must be assessed as an interrelated framework to optimize their management and integrate effectively with other decision-making tools in uncertain environments. This research shows a synthesis and analysis of the main qualitative/quantitative methods that have been used in the literature considering the treatment of event dependencies in supply chain risk management in the period 2003– 2018. The results revealed that the integration with disruption analysis tools and artificial intelligence methods are the most common types adopted, with increasing trend and effectiveness of Bayesian and fuzzy theory approache

    Model based fault diagnosis for hybrid systems : application on chemical processes

    Get PDF
    The complexity and the size of the industrial chemical processes induce the monitoring of a growing number of process variables. Their knowledge is generally based on the measurements of system variables and on the physico-chemical models of the process. Nevertheless, this information is imprecise because of process and measurement noise. So the research ways aim at developing new and more powerful techniques for the detection of process fault. In this work, we present a method for the fault detection based on the comparison between the real system and the reference model evolution generated by the extended Kalman filter. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. It is a general object-oriented environment which provides common and reusable components designed for the development and the management of dynamic simulation of industrial systems. The use of this method is illustrated through a didactic example relating to the field of Chemical Process System Engineering

    Fault Tree Analysis: a survey of the state-of-the-art in modeling, analysis and tools

    Get PDF
    Fault tree analysis (FTA) is a very prominent method to analyze the risks related to safety and economically critical assets, like power plants, airplanes, data centers and web shops. FTA methods comprise of a wide variety of modelling and analysis techniques, supported by a wide range of software tools. This paper surveys over 150 papers on fault tree analysis, providing an in-depth overview of the state-of-the-art in FTA. Concretely, we review standard fault trees, as well as extensions such as dynamic FT, repairable FT, and extended FT. For these models, we review both qualitative analysis methods, like cut sets and common cause failures, and quantitative techniques, including a wide variety of stochastic methods to compute failure probabilities. Numerous examples illustrate the various approaches, and tables present a quick overview of results

    ASSESSMENT OF THE POSSIBILITY OF USING BAYESIAN NETS AND PETRI NETS IN THE PROCESS OF SELECTING ADDITIVE MANUFACTURING TECHNOLOGY IN A MANUFACTURING COMPANY

    Get PDF
    The changes caused by Industry 4.0 determine the decisions taken by manufacturing companies. Their activities are aimed at adapting processes and products to dynamic market requirements. Additive manufacturing technologies (AM) are the answer to the needs of enterprises. The implementation of AM technology brings many benefits, although for most 3D printing techniques it is also relatively expensive. Therefore, the implementation process should be preceded by an appropriate analysis, in order, finally, to assess the solution. This article presents the concept of using the Bayesian network when planning the implementation of AM technology. The use of the presented model allows the level of the success of the implementation of selected AM technology, to be estimated under given environmental conditions
    corecore