54,588 research outputs found

    Numerical Analysis of the Non-uniform Sampling Problem

    Get PDF
    We give an overview of recent developments in the problem of reconstructing a band-limited signal from non-uniform sampling from a numerical analysis view point. It is shown that the appropriate design of the finite-dimensional model plays a key role in the numerical solution of the non-uniform sampling problem. In the one approach (often proposed in the literature) the finite-dimensional model leads to an ill-posed problem even in very simple situations. The other approach that we consider leads to a well-posed problem that preserves important structural properties of the original infinite-dimensional problem and gives rise to efficient numerical algorithms. Furthermore a fast multilevel algorithm is presented that can reconstruct signals of unknown bandwidth from noisy non-uniformly spaced samples. We also discuss the design of efficient regularization methods for ill-conditioned reconstruction problems. Numerical examples from spectroscopy and exploration geophysics demonstrate the performance of the proposed methods

    Sampling in the Analysis Transform Domain

    Full text link
    Many signal and image processing applications have benefited remarkably from the fact that the underlying signals reside in a low dimensional subspace. One of the main models for such a low dimensionality is the sparsity one. Within this framework there are two main options for the sparse modeling: the synthesis and the analysis ones, where the first is considered the standard paradigm for which much more research has been dedicated. In it the signals are assumed to have a sparse representation under a given dictionary. On the other hand, in the analysis approach the sparsity is measured in the coefficients of the signal after applying a certain transformation, the analysis dictionary, on it. Though several algorithms with some theory have been developed for this framework, they are outnumbered by the ones proposed for the synthesis methodology. Given that the analysis dictionary is either a frame or the two dimensional finite difference operator, we propose a new sampling scheme for signals from the analysis model that allows to recover them from their samples using any existing algorithm from the synthesis model. The advantage of this new sampling strategy is that it makes the existing synthesis methods with their theory also available for signals from the analysis framework.Comment: 13 Pages, 2 figure

    Four-dimensional tomographic reconstruction by time domain decomposition

    Full text link
    Since the beginnings of tomography, the requirement that the sample does not change during the acquisition of one tomographic rotation is unchanged. We derived and successfully implemented a tomographic reconstruction method which relaxes this decades-old requirement of static samples. In the presented method, dynamic tomographic data sets are decomposed in the temporal domain using basis functions and deploying an L1 regularization technique where the penalty factor is taken for spatial and temporal derivatives. We implemented the iterative algorithm for solving the regularization problem on modern GPU systems to demonstrate its practical use

    Heat-kernel approach for scattering

    Get PDF
    An approach for solving scattering problems, based on two quantum field theory methods, the heat kernel method and the scattering spectral method, is constructed. This approach converts a method of calculating heat kernels into a method of solving scattering problems. This allows us to establish a method of scattering problems from a method of heat kernels. As an application, we construct an approach for solving scattering problems based on the covariant perturbation theory of heat-kernel expansions. In order to apply the heat-kernel method to scattering problems, we first calculate the off-diagonal heat-kernel expansion in the frame of the covariant perturbation theory. Moreover, as an alternative application of the relation between heat kernels and partial-wave phase shifts presented in this paper, we give an example of how to calculate a global heat kernel from a known scattering phase shift

    Electromagnetic Form Factors and Charge Densities From Hadrons to Nuclei

    Full text link
    A simple exact covariant model in which a scalar particle is modeled as a bound state of two different particles is used to elucidate relativistic aspects of electromagnetic form factors. The model form factor is computed using an exact covariant calculation of the lowest-order triangle diagram and shown to be the same as that obtained using light-front techniques. The meaning of transverse density is explained using coordinate space variables, allowing us to identify a true mean-square transverse size directly related to the form factor. We show that the rest-frame charge distribution is generally not observable because of the failure to uphold current conservation. Neutral systems of two charged constituents are shown to obey the lore that the heavier one is generally closer to the transverse origin than the lighter one. It is argued that the negative central charge density of the neutron arises, in pion-cloud models, from pions of high longitudinal momentum. The non-relativistic limit is defined precisely and the ratio of the binding energy to that of the mass of the lightest constituent is shown to govern the influence of relativistic effects. The exact relativistic formula for the form factor reduces to the familiar one of the three-dimensional Fourier transform of a square of a wave function for a very limited range of parameters. For masses that mimic the quark-di-quark model of the nucleon we find substantial relativistic corrections for any value of Q2Q^2. A schematic model of the lowest s-states of nuclei is used to find that relativistic effects decrease the form factor for light nuclei but increase the form factor for heavy nuclei. Furthermore, these states are strongly influenced by relativity.Comment: 18 pages, 11 figure
    corecore