174,416 research outputs found

    Reduce the rank calculation of a high-dimensional sparse matrix based on network controllability theory

    Full text link
    Numerical computing of the rank of a matrix is a fundamental problem in scientific computation. The datasets generated by the internet often correspond to the analysis of high-dimensional sparse matrices. Notwithstanding recent advances in the promotion of traditional singular value decomposition (SVD), an efficient estimation algorithm for the rank of a high-dimensional sparse matrix is still lacking. Inspired by the controllability theory of complex networks, we converted the rank of a matrix into maximum matching computing. Then, we established a fast rank estimation algorithm by using the cavity method, a powerful approximate technique for computing the maximum matching, to estimate the rank of a sparse matrix. In the merit of the natural low complexity of the cavity method, we showed that the rank of a high-dimensional sparse matrix can be estimated in a much faster way than SVD with high accuracy. Our method offers an efficient pathway to quickly estimate the rank of the high-dimensional sparse matrix when the time cost of computing the rank by SVD is unacceptable.Comment: 10 pages, 4 figure

    Efficient and accurate algorithms for computing matrix trigonometric functions

    Full text link
    [EN] Trigonometric matrix functions play a fundamental role in second order differential equations. This work presents an algorithm based on Taylor series for computing the matrix cosine. It uses a backward error analysis with improved bounds. Numerical experiments show that MATLAB implementations of this algorithm has higher accuracy than other MATLAB implementations of the state of the art in the majority of tests. Furthermore, we have implemented the designed algorithm in language C for general purpose processors, and in CUDA for one and two NVIDIA GPUs. We obtained a very good performance from these implementations thanks to the high computational power of these hardware accelerators and our effort driven to avoid as much communications as possible. All the implemented programs are accessible through the MATLAB environment. (C) 2016 Elsevier B.V. All rights reserved.This work has been supported by Spanish Ministerio de Economía y Competitividad and European Regional Development Fund (ERDF) grant TIN2014-59294-PAlonso-Jordá, P.; Ibáñez González, JJ.; Sastre Martinez, J.; Peinado Pinilla, J.; Defez Candel, E. (2017). Efficient and accurate algorithms for computing matrix trigonometric functions. Journal of Computational and Applied Mathematics. 309(1):325-332. https://doi.org/10.1016/j.cam.2016.05.015S325332309

    Novel Monte Carlo Methods for Large-Scale Linear Algebra Operations

    Get PDF
    Linear algebra operations play an important role in scientific computing and data analysis. With increasing data volume and complexity in the Big Data era, linear algebra operations are important tools to process massive datasets. On one hand, the advent of modern high-performance computing architectures with increasing computing power has greatly enhanced our capability to deal with a large volume of data. One the other hand, many classical, deterministic numerical linear algebra algorithms have difficulty to scale to handle large data sets. Monte Carlo methods, which are based on statistical sampling, exhibit many attractive properties in dealing with large volume of datasets, including fast approximated results, memory efficiency, reduced data accesses, natural parallelism, and inherent fault tolerance. In this dissertation, we present new Monte Carlo methods to accommodate a set of fundamental and ubiquitous large-scale linear algebra operations, including solving large-scale linear systems, constructing low-rank matrix approximation, and approximating the extreme eigenvalues/ eigenvectors, across modern distributed and parallel computing architectures. First of all, we revisit the classical Ulam-von Neumann Monte Carlo algorithm and derive the necessary and sufficient condition for its convergence. To support a broad family of linear systems, we develop Krylov subspace Monte Carlo solvers that go beyond the use of Neumann series. New algorithms used in the Krylov subspace Monte Carlo solvers include (1) a Breakdown-Free Block Conjugate Gradient algorithm to address the potential rank deficiency problem occurred in block Krylov subspace methods; (2) a Block Conjugate Gradient for Least Squares algorithm to stably approximate the least squares solutions of general linear systems; (3) a BCGLS algorithm with deflation to gain convergence acceleration; and (4) a Monte Carlo Generalized Minimal Residual algorithm based on sampling matrix-vector products to provide fast approximation of solutions. Secondly, we design a rank-revealing randomized Singular Value Decomposition (R3SVD) algorithm for adaptively constructing low-rank matrix approximations to satisfy application-specific accuracy. Thirdly, we study the block power method on Markov Chain Monte Carlo transition matrices and find that the convergence is actually depending on the number of independent vectors in the block. Correspondingly, we develop a sliding window power method to find stationary distribution, which has demonstrated success in modeling stochastic luminal Calcium release site. Fourthly, we take advantage of hybrid CPU-GPU computing platforms to accelerate the performance of the Breakdown-Free Block Conjugate Gradient algorithm and the randomized Singular Value Decomposition algorithm. Finally, we design a Gaussian variant of Freivalds’ algorithm to efficiently verify the correctness of matrix-matrix multiplication while avoiding undetectable fault patterns encountered in deterministic algorithms

    Scalable iterative methods for sampling from massive Gaussian random vectors

    Full text link
    Sampling from Gaussian Markov random fields (GMRFs), that is multivariate Gaussian ran- dom vectors that are parameterised by the inverse of their covariance matrix, is a fundamental problem in computational statistics. In this paper, we show how we can exploit arbitrarily accu- rate approximations to a GMRF to speed up Krylov subspace sampling methods. We also show that these methods can be used when computing the normalising constant of a large multivariate Gaussian distribution, which is needed for both any likelihood-based inference method. The method we derive is also applicable to other structured Gaussian random vectors and, in particu- lar, we show that when the precision matrix is a perturbation of a (block) circulant matrix, it is still possible to derive O(n log n) sampling schemes.Comment: 17 Pages, 4 Figure
    • …
    corecore