1,192 research outputs found

    Quality of Service-Based Medium Access Control Mechanism for Multimedia Traffic in Mobile Ad Hoc Networks

    Get PDF
    This thesis describes an investigation on the problem of quality of service (QoS) support in mobile ad hoc networks (MANETs). The decentralized nature of wireless ad hoc networks makes them suitable for a variety of applications where central nodes cannot be relied on. This thesis presents a medium access control (MAC) QoS mechanism for multimedia applications in IEEE 802.11e based MANETs. IEEE 802.11e standard draft includes new features to facilitate and promote the provision of QoS guarantees in wireless networks with a long-term solution based on QoS-architectures. The motivation is driven by the need to support increasing demand of time-sensitive applications such as Voice over IP (VoIP) and video conferencing applications. IEEE 802.11e enhances the Distributed Coordination Function (DCF) and the Point Coordination Function (PCF) of the legacy IEEE 802.11, through a new coordination function: the Hybrid Coordination Function (HCF). Within the HCF, there are two methods of channel access: HCF Controlled Channel Access (HCCA) and Enhanced Distributed Channel Access (EDCA). EDCA operates in infrastructure-less ad hoc mode and is widely used in MANETs, unlike HCCA, which further assures QoS provisioning operates in infrastructure mode in the presence of access points (AP). Recent researches showed that EDCA lacks QoS support of real-time traffic in MANETs due to its contention based medium access method. This thesis takes HCCA QoS provisioning potentials to MANETs by implementing a MAC mechanism in which HCCA is employed on top of EDCA to work in infrastructure-less environment like MANET with the help of multiple channels. The mechanism dedicates a unique receiver-based channel to every mobile node. It will act as virtual hybrid coordinator (VHC) to exercise control over the channel in contention-free manner while maintaining a common channel in which all mobile nodes can exchange broadcast and routing related messages. The mechanism can be easily integrated with existing 802.11 systems without modification to existing protocols while ensuring a level of admission control and resource reservation over the medium. Simulation results indicate that the mechanism significantly improves the overall network throughput by 20% at the saturation point and improves average delay by 20% at the saturation point compared to pure EDCA with or without multiple channels. Even with multi-channel EDCA, our mechanism guarantees better performance in terms of throughput and MAC delay for high priority traffic in MANET. The research contribution on MAC layer can be integrated into a larger framework for QoS support in MANETs, which opens a wide range of further research in QoS provisioning in MANETs and solve QoS multi-layer design and implementation issues

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    Providing Dynamic TXOP for QoS Support of Video Transmission in IEEE 802.11e WLANs

    Get PDF
    The IEEE 802.11e standard introduced by IEEE 802.11 Task Group E (TGe) enhances the Quality of Service (QoS) by means of HCF Controlled Channel Access (HCCA). The scheduler of HCCA allocates Transmission Opportunities (TXOPs) to QoS-enabled Station (QSTA) based on their TS Specifications (TSPECs) negotiated at the traffic setup time so that it is only efficient for Constant Bit Rate (CBR) applications. However, Variable Bit Rate (VBR) traffics are not efficiently supported as they exhibit nondeterministic profile during the time. In this paper, we present a dynamic TXOP assignment Scheduling Algorithm for supporting the video traffics transmission over IEEE 802.11e wireless networks. This algorithm uses a piggybacked information about the size of the subsequent video frames of the uplink traffic to assist the Hybrid Coordinator accurately assign the TXOP according to the fast changes in the VBR profile. The proposed scheduling algorithm has been evaluated using simulation with different variability level video streams. The simulation results show that the proposed algorithm reduces the delay experienced by VBR traffic streams comparable to HCCA scheduler due to the accurate assignment of the TXOP which preserve the channel time for transmission.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0369

    Adaptive delayed channel access for IEEE 802.11n WLANs

    Get PDF
    Abstract— In this paper we investigate potential benefits that an adaptive delayed channel access algorithm can attain for the next-generation wireless LANs, the IEEE 802.11n. We show that the performance of frame aggregation introduced by the 802.11n adheres due to the priority mechanism of the legacy 802.11e EDCA scheduler, resulting in a poor overall performance. Because high priority flows have low channel utilization, the low priority flows throughputs can be amerced further. By introducing an additional delay at the MAC layer, before the channel access scheduling, it will retain aggregate sizes at higher numbers and consequently a better channel utilization. Also, in order to support both UDP and TCP transport layer protocols, the algorithm’s operational conditions are kept adaptive. The simulation results demonstrate that our proposed adaptive delayed channel access outperforms significantly the current 802.11n specification and non-adaptive delayed channel access

    Buffer Sizing for 802.11 Based Networks

    Get PDF
    We consider the sizing of network buffers in 802.11 based networks. Wireless networks face a number of fundamental issues that do not arise in wired networks. We demonstrate that the use of fixed size buffers in 802.11 networks inevitably leads to either undesirable channel under-utilization or unnecessary high delays. We present two novel dynamic buffer sizing algorithms that achieve high throughput while maintaining low delay across a wide range of network conditions. Experimental measurements demonstrate the utility of the proposed algorithms in a production WLAN and a lab testbed.Comment: 14 pages, to appear on IEEE/ACM Transactions on Networkin
    corecore