43 research outputs found

    Ground Based SAR Interferometry: a Novel Tool for Geoscience

    Get PDF

    Second generation of AVTIS FMCW millimeter wave radars for mapping volcanic terrain

    Get PDF
    The second generation AVTIS ground-based millimeter wave instruments designed for monitoring topography of volcanic lava domes are solid state 94 GHz FMCW rastered, real beam radars operating at ranges of up to ~7 km with a range resolution of ~2.5 m. Operating ten times faster than the prototype with reduced power consumption suitable for battery powered portable use as well as installation at a telemetered site under solar power, we examine their performance as tools for monitoring topography over time and report on the operational statistics both as a radar sensor and as a means of generating digital elevation maps.Publisher PD

    Sulfur Degassing From Volcanoes: Source Conditions, Surveillance, Plume Chemistry and Earth System Impacts

    Get PDF
    International audienceDespite its relatively minor abundance in magmas (compared with H2O and CO2), sulfur degassing from volcanoes is of tremendous significance. It can exert substantial influence on magmatic evolution (potentially capable of triggering eruptions); represents one of the most convenient opportunities for volcano monitoring and hazard assessment; and can result in major impacts on the atmosphere, climate and terrestrial ecosystems at a range of spatial and temporal scales. The complex behavior of sulfur in magmas owes much to its multiple valence states (-II, 0, IV, VI), speciation (e.g., S2, H2S, SO2, OCS and SO3 in the gas phase; S2-, SO42- and SO32- in the melt; and non-volatile solid phases such as pyrrhotite and anhydrite), and variation in stable isotopic composition (32S, 33S, 34S and 36S; e.g., MĂ©trich and Mandeville 2010). Sulfur chemistry in the atmosphere is similarly rich involving gaseous and condensed phases and invoking complex homogeneous and heterogeneous chemical reactions. Sulfur degassing from volcanoes and geothermal areas is also important since a variety of microorganisms thrive based on the redox chemistry of sulfur: by reducing sulfur, thiosulfate, sulfite and sulfate to H2S, or oxidizing sulfur and H2S to sulfate (e.g., Takano et al. 1997; Amend and Shock 2001; Shock et al. 2010). Understanding volcanic sulfur degassing thus provides vital insights into magmatic, volcanic and hydrothermal processes; the impacts of volcanism on the Earth system; and biogeochemical cycles. Here, we review the causes of variability in sulfur abundance and speciation in different geodynamic contexts; the measurement of sulfur emissions from volcanoes; links between subsurface processes and surface observations; sulfur chemistry in volcanic plumes; and the consequences of sulfur degassing for climate and the environment

    Advanced Ground-Based Real and Synthetic Aperture Radar

    Get PDF
    Ground-based/terrestrial radar interferometry (GBRI) is a scientific topic of increasing interest in recent years. The GBRI is used in several field as remote sensing technique for monitoring natural environment (landslides, glacier, and mines) or infrastructures (bridges, towers). These sensors provide the displacement of targets by measuring the phase difference between sending and receiving radar signal. If the acquisition rate is enough the GBRI can provide the natural frequency, e.g. by calculating the Fourier transform of displacement. The research activity, presented in this work, concerns design and development of some advanced GBRI systems. These systems are related to the following issue: detection of displacement vector, Multiple Input Multiple Output (MIMO) and radars with 3D capability

    Ground-Based Measurements of the 2014–2015 Holuhraun Volcanic Cloud (Iceland)

    Get PDF
    The 2014–2015 Bárðarbunga fissure eruption at Holuhraun in central Iceland was distinguished by the high emission of gases, in total 9.6 Mt SO2, with almost no tephra. This work collates all ground-based measurements of this extraordinary eruption cloud made under particularly challenging conditions: remote location, optically dense cloud with high SO2 column amounts, low UV intensity, frequent clouds and precipitation, an extensive and hot lava field, developing ramparts, and high-latitude winter conditions. Semi-continuous measurements of SO2 flux with three scanning DOAS instruments were augmented by car traverses along the ring-road and along the lava. The ratios of other gases/SO2 were measured by OP-FTIR, MultiGAS, and filter packs. Ratios SO2/HCl = 30–110 and SO2/HF = 30–130 show a halogen-poor eruption cloud. Scientists on-site reported extremely minor tephra production during the eruption. OPC and filter packs showed low particle concentrations similar to non-eruption cloud conditions. Three weather radars detected a droplet-rich eruption cloud. Top of eruption cloud heights of 0.3–5.5 km agl were measured with ground- and aircraft-based visual observations, web camera and NicAIR II infrared images, triangulation of scanning DOAS instruments, and the location of SO2 peaks measured by DOAS traverses. Cloud height and emission rate measurements were critical for initializing gas dispersal simulations for hazard forecasting

    Ground-Based measurements of the 2014-2015 holuhraun volcanic cloud (Iceland)

    Get PDF
    The 2014-2015 Bárðarbunga fissure eruption at Holuhraun in central Iceland was distinguished by the high emission of gases, in total 9.6 Mt SO2, with almost no tephra. This work collates all ground-based measurements of this extraordinary eruption cloud made under particularly challenging conditions: remote location, optically dense cloud with high SO2 column amounts, low UV intensity, frequent clouds and precipitation, an extensive and hot lava field, developing ramparts, and high-latitude winter conditions. Semi-continuous measurements of SO2 flux with three scanning DOAS instruments were augmented by car traverses along the ring-road and along the lava. The ratios of other gases/SO2 were measured by OP-FTIR, MultiGAS, and filter packs. Ratios of SO2/HCl = 30-110 and SO2/HF = 30-130 show a halogen-poor eruption cloud. Scientists on-site reported extremely minor tephra production during the eruption. OPC and filter packs showed low particle concentrations similar to non-eruption cloud conditions. Three weather radars detected a droplet-rich eruption cloud. Top of eruption cloud heights of 0.3-5.5 km agl were measured with ground-and aircraft-based visual observations, web camera and NicAIR II infrared images, triangulation of scanning DOAS instruments, and the location of SO2 peaks measured by DOAS traverses. Cloud height and emission rate measurements were critical for initializing gas dispersal simulations for hazard forecasting

    Volcanic Processes Monitoring and Hazard Assessment Using Integration of Remote Sensing and Ground-Based Techniques

    Get PDF
    The monitoring of active volcanoes is a complex task based on multidisciplinary and integrated analyses that use ground, drones and satellite monitoring devices. Over time, and with the development of new technologies and increasing frequency of acquisition, the use of remote sensing to accomplish this important task has grown enormously. This is especially so with the use of drones and satellites for classifying eruptive events and detecting the opening of new vents, the spreading of lava flows on the surface or ash plumes in the atmosphere, the fallout of tephra on the ground, the intrusion of new magma within the volcano edifice, and the deformation preceding impending eruptions, and many other factors. The main challenge in using remote sensing techniques is to develop automated and reliable systems that may assist the decision maker in volcano monitoring, hazard assessment and risk reduction. The integration with ground-based techniques represents a valuable additional aspect that makes the proposed methods more robust and reinforces the results obtained. This collection of papers is focused on several active volcanoes, such as Stromboli, Etna, and Volcano in Italy; the Long Valley caldera and Kilauea volcano in the USA; and Cotopaxi in Ecuador

    SR-FTiR microscopy and FTIR imaging in the earth sciences

    Full text link
    During the last decades, several books have been devoted to the application of spectroscopic methods in mineralogy. Several short courses and meetings have addressed particular aspects of spectroscopy, such as the analysis of hydrous components in minerals and Earth materials. In these books, complete treatment of the infrared theory and practical aspects of instrumentation and methods, along with an exhaustive list of references, can be found. The present chapter is intended to cover those aspects of infrared spectroscopy that have been developed in the past decade and are not included in earlier reviews such as Volume 18 of Reviews in Mineralogy. These new topics involve primarily: (1) the use of synchrotron radiation (SR), which, although not a routine method, is now rather extensively applied in infrared studies, in particular those requiring ultimate spatial and time resolution and the analysis of extremely small samples (a few tens of micrometers); (2) the development of imaging techniques also for foreseen time resolved studies of geo-mineralogical processes and environmental studies.Comment: 36 pages, 24 figures - Reviews in Mineralogy & Geochemistry - Vol. 78 (2013) in pres
    corecore