643 research outputs found

    Comparator Design in Sensors for Environmental Monitoring

    Get PDF
    This paper presents circuit design considerations of comparator in analog-to-digital converters (ADC) applied for a portable, low-cost and high performance nano-sensor chip which can be applied to detect the airborne magnetite pollution nano particulate matter (PM) for environmental monitoring. High-resolution ADC plays a vital important role in high perfor-mance nano-sensor, while high-resolution comparator is a key component in ADC. In this work, some important design issues related to comparators in analog-to-digital converters (ADCs) are discussed, simulation results show that the resolution of the comparator proposed can achieve 5µV , and it is appropriate for high-resolution application

    A Low-Power, Reconfigurable, Pipelined ADC with Automatic Adaptation for Implantable Bioimpedance Applications

    Get PDF
    Biomedical monitoring systems that observe various physiological parameters or electrochemical reactions typically cannot expect signals with fixed amplitude or frequency as signal properties can vary greatly even among similar biosignals. Furthermore, advancements in biomedical research have resulted in more elaborate biosignal monitoring schemes which allow the continuous acquisition of important patient information. Conventional ADCs with a fixed resolution and sampling rate are not able to adapt to signals with a wide range of variation. As a result, reconfigurable analog-to-digital converters (ADC) have become increasingly more attractive for implantable biosensor systems. These converters are able to change their operable resolution, sampling rate, or both in order convert changing signals with increased power efficiency. Traditionally, biomedical sensing applications were limited to low frequencies. Therefore, much of the research on ADCs for biomedical applications focused on minimizing power consumption with smaller bias currents resulting in low sampling rates. However, recently bioimpedance monitoring has become more popular because of its healthcare possibilities. Bioimpedance monitoring involves injecting an AC current into a biosample and measuring the corresponding voltage drop. The frequency of the injected current greatly affects the amplitude and phase of the voltage drop as biological tissue is comprised of resistive and capacitive elements. For this reason, a full spectrum of measurements from 100 Hz to 10-100 MHz is required to gain a full understanding of the impedance. For this type of implantable biomedical application, the typical low power, low sampling rate analog-to-digital converter is insufficient. A different optimization of power and performance must be achieved. Since SAR ADC power consumption scales heavily with sampling rate, the converters that sample fast enough to be attractive for bioimpedance monitoring do not have a figure-of-merit that is comparable to the slower converters. Therefore, an auto-adapting, reconfigurable pipelined analog-to-digital converter is proposed. The converter can operate with either 8 or 10 bits of resolution and with a sampling rate of 0.1 or 20 MS/s. Additionally, the resolution and sampling rate are automatically determined by the converter itself based on the input signal. This way, power efficiency is increased for input signals of varying frequency and amplitude

    Modeling and Implementation of A 6-Bit, 50MHz Pipelined ADC in CMOS

    Get PDF
    The pipelined ADC is a popular Nyquist-rate data converter due to its attractive feature of maintaining high accuracy at high conversion rate with low complexity and power consumption. The rapid growth of its application such as mobile system, digital video and high speed data acquisition is driving the pipelined ADC design towards higher speed, higher precision with lower supply voltage and power consumption. This thesis project aims at modeling and implementation of a pipelined ADC with high speed and low power consumption

    Design and Analysis of a Low-Power 8-Bit 500 KS/S SAR ADC for Bio-Medical Implant Devices

    Get PDF
    This thesis project involves the design and analysis of an 8-bit Successive Approximation Register (SAR) Analog to Digital Convertor (ADC), designed for low- power applications such as bio-medical implants. The sampling rate for this ADC is 500 KS/s. The power consumption for the whole SAR ADC system was measured to be 2.1 uW. The novelty of this project is the proposal of an extremely energy efficient comparator architecture. The result is the design of a final ADC with reasonable sampling speed, accuracy and low power consumption. In this project, all the different subsystems have been designed at the transistor level with 45 nm CMOS technology. The logical circuit was designed using Verilog language. It was then synthesized and integrated in the overall system

    A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s

    Get PDF
    This paper presents a 10 bit successive approximation ADC in 65 nm CMOS that benefits from technology scaling. It meets extremely low power requirements by using a charge-redistribution DAC that uses step-wise charging, a dynamic two-stage comparator and a delay-line-based controller. The ADC requires no external reference current and uses only one external supply voltage of 1.0 V to 1.3 V. Its supply current is proportional to the sample rate (only dynamic power consumption). The ADC uses a chip area of approximately 115--225 μm2. At a sample rate of 1 MS/s and a supply voltage of 1.0 V, the 10 bit ADC consumes 1.9 μW and achieves an energy efficiency of 4.4 fJ/conversion-step

    Design and Simulation of an 8-Bit Successive Approximation Register Charge-Redistribution Analog-To-Digital Converter

    Get PDF
    The thesis initially investigates the history of the monolithic ADCs. The next chapter explores the different types of ADCs available in the market today. Next, the operation of a 4-bit SAR ADC has been studied. Based on this analysis, an 8-bit charge-redistribution SAR ADC has been designed and simulated with Multisim (National Instruments, Austin, TX). The design is divided into different blocks which are individually implemented and tested. Level-1 SPICE MOSFET models representative of 5μm devices were used wherever individual MOSFETs were used in the design. Finally, the power dissipation during the conversion period was also estimated. The supply voltage for the ADC is 5V and the clock frequency is 500KHz

    A Low Power Mid-Rail Dual Slope Analog-To-Digital Converter for Biomedical Instrumentation

    Get PDF
    There are an estimated 15 million babies born preterm every year and it is on the rise. The complications that arise from this can be quite severe and are the leading causes of death among children under 5 years of age. Among these complications is a condition known as apnea. This disorder is defined as the suspension of breathing during sleep for usually 10 to 30 seconds and can occur up to 20-30 times per hour for preterm infants. This lack of oxygen in the bloodstream can have troubling effects, such as brain damage and death if the apnea period is longer than expected. This creates a dire need to continuously monitor the respiration state of babies born prematurely. Given that the breathing signal is in analog form, a conversion to its digital counterpart is necessary.In this thesis, a novel low power analog-to-digital converter (ADC) for the digitization and analyzation of the respiration signal is presented. The design of the ADC demonstrates an innovative approach on how to operate on a single polarity supply system, which effectively doubles the sampling speed. The ADC has been realized in a standard 130 nm CMOS process

    A 1.67 pJ/Conversion-step 8-bit SAR-Flash ADC Architecture in 90-nm CMOS Technology

    Get PDF
    A novice advanced architecture of 8-bit analog todigital converter is introduced and analyzed in this work. Thestructure of proposed ADC is based on the sub-ranging ADCarchitecture in which a 4-bit resolution flash-ADC is utilized. Theproposed ADC architecture is designed by employing a comparatorwhich is equipped with common mode current feedback andgain boosting technique (CMFD-GB) and a residue amplifier. Theproposed 8 bits ADC structure can achieve the speed of 140 megasamplesper second. The proposed ADC architecture is designedat a resolution of 8 bits at 10 MHz sampling frequency. DNL andINL values of the proposed design are -0.94/1.22 and -1.19/1.19respectively. The ADC design dissipates a power of 1.24 mWwith the conversion speed of 0.98 ns. The magnitude of SFDRand SNR from the simulations at Nyquist input is 39.77 and 35.62decibel respectively. Simulations are performed on a SPICE basedtool in 90 nm CMOS technology. The comparison shows betterperformance for the proposed ADC design in comparison toother ADC architectures regarding speed, resolution and powerconsumption
    • …
    corecore