172 research outputs found

    OpenCL Actors - Adding Data Parallelism to Actor-based Programming with CAF

    Full text link
    The actor model of computation has been designed for a seamless support of concurrency and distribution. However, it remains unspecific about data parallel program flows, while available processing power of modern many core hardware such as graphics processing units (GPUs) or coprocessors increases the relevance of data parallelism for general-purpose computation. In this work, we introduce OpenCL-enabled actors to the C++ Actor Framework (CAF). This offers a high level interface for accessing any OpenCL device without leaving the actor paradigm. The new type of actor is integrated into the runtime environment of CAF and gives rise to transparent message passing in distributed systems on heterogeneous hardware. Following the actor logic in CAF, OpenCL kernels can be composed while encapsulated in C++ actors, hence operate in a multi-stage fashion on data resident at the GPU. Developers are thus enabled to build complex data parallel programs from primitives without leaving the actor paradigm, nor sacrificing performance. Our evaluations on commodity GPUs, an Nvidia TESLA, and an Intel PHI reveal the expected linear scaling behavior when offloading larger workloads. For sub-second duties, the efficiency of offloading was found to largely differ between devices. Moreover, our findings indicate a negligible overhead over programming with the native OpenCL API.Comment: 28 page

    Sparse Volumetric Deformation

    Get PDF
    Volume rendering is becoming increasingly popular as applications require realistic solid shape representations with seamless texture mapping and accurate filtering. However rendering sparse volumetric data is difficult because of the limited memory and processing capabilities of current hardware. To address these limitations, the volumetric information can be stored at progressive resolutions in the hierarchical branches of a tree structure, and sampled according to the region of interest. This means that only a partial region of the full dataset is processed, and therefore massive volumetric scenes can be rendered efficiently. The problem with this approach is that it currently only supports static scenes. This is because it is difficult to accurately deform massive amounts of volume elements and reconstruct the scene hierarchy in real-time. Another problem is that deformation operations distort the shape where more than one volume element tries to occupy the same location, and similarly gaps occur where deformation stretches the elements further than one discrete location. It is also challenging to efficiently support sophisticated deformations at hierarchical resolutions, such as character skinning or physically based animation. These types of deformation are expensive and require a control structure (for example a cage or skeleton) that maps to a set of features to accelerate the deformation process. The problems with this technique are that the varying volume hierarchy reflects different feature sizes, and manipulating the features at the original resolution is too expensive; therefore the control structure must also hierarchically capture features according to the varying volumetric resolution. This thesis investigates the area of deforming and rendering massive amounts of dynamic volumetric content. The proposed approach efficiently deforms hierarchical volume elements without introducing artifacts and supports both ray casting and rasterization renderers. This enables light transport to be modeled both accurately and efficiently with applications in the fields of real-time rendering and computer animation. Sophisticated volumetric deformation, including character animation, is also supported in real-time. This is achieved by automatically generating a control skeleton which is mapped to the varying feature resolution of the volume hierarchy. The output deformations are demonstrated in massive dynamic volumetric scenes

    Doctor of Philosophy

    Get PDF
    dissertationPartial differential equations (PDEs) are widely used in science and engineering to model phenomena such as sound, heat, and electrostatics. In many practical science and engineering applications, the solutions of PDEs require the tessellation of computational domains into unstructured meshes and entail computationally expensive and time-consuming processes. Therefore, efficient and fast PDE solving techniques on unstructured meshes are important in these applications. Relative to CPUs, the faster growth curves in the speed and greater power efficiency of the SIMD streaming processors, such as GPUs, have gained them an increasingly important role in the high-performance computing area. Combining suitable parallel algorithms and these streaming processors, we can develop very efficient numerical solvers of PDEs. The contributions of this dissertation are twofold: proposal of two general strategies to design efficient PDE solvers on GPUs and the specific applications of these strategies to solve different types of PDEs. Specifically, this dissertation consists of four parts. First, we describe the general strategies, the domain decomposition strategy and the hybrid gathering strategy. Next, we introduce a parallel algorithm for solving the eikonal equation on fully unstructured meshes efficiently. Third, we present the algorithms and data structures necessary to move the entire FEM pipeline to the GPU. Fourth, we propose a parallel algorithm for solving the levelset equation on fully unstructured 2D or 3D meshes or manifolds. This algorithm combines a narrowband scheme with domain decomposition for efficient levelset equation solving

    Experimental Benchmarks and Initial Evaluation of the Performance of the PASM System Prototype

    Get PDF
    The work reported here represents experiences with the PASM parallel processing system prototype during its first operational year. Most of the experiments were performed by students in the Fall semester of 1987. The first programming, and the first timing measurements, were made during the summer of 1987 by Sam Fineberg. The goal of the collection of experiments presented here was to undertake an Application-driven Architecture Study of the PASM system as a paradigm for parallel architecture evaluation in general. PASM was an excellent vehicle for experimenting with this evaluation technique due to its unique architectural features. Among these are: 1. A reconfigurable, partitionable multistage circuit-switched network. 2. Support for both SIMD and MIMD programs. 3. Ability to execute hybrid SIMD/MIMD programs. 4. An instruction queue which allows overlap of control-flow and data manipulation between micro-control (MC) units and processing elements (PE). It had been hypothesized that superlinear speed-up over the number of PEs could be attained with this feature, and experimental results verified this. 5. Support for barrier synchronization of MIMD tasks. This feature was exploited in some non-standard ways to show the ability to decouple variant length SIMD instructions into multiple MIMD streams for an overall performance benefit. This type of study is expected to continue in the future on PASM and other parallel machines at Purdue. This report should serve as a guide for this future work as well

    Efficient Algorithms for Large-Scale Image Analysis

    Get PDF
    This work develops highly efficient algorithms for analyzing large images. Applications include object-based change detection and screening. The algorithms are 10-100 times as fast as existing software, sometimes even outperforming FGPA/GPU hardware, because they are designed to suit the computer architecture. This thesis describes the implementation details and the underlying algorithm engineering methodology, so that both may also be applied to other applications

    Fast online predictive compression of radio astronomy data

    Get PDF
    This report investigates the fast, lossless compression of 32-bit single precision floating-point values. High speed compression is critical in the context of the MeerKAT radio telescope currently under construction in Southern Africa and Australia, which will produce data at rates up to 1 Petabyte every 20 seconds. The compression technique being investigated is based on predictive compression, which has proven successful at achieving high-speed compression in previous research. Several different predictive techniques (which includes polynomial extrapolation), along with CPU- and GPU-based parallelization approaches are discussed. The implementation successfully achieves throughput rates in excess of 6 GiB/s for compression and much higher rates for decompression using a 64-core AMD Opteron machine, achieving file-size reductions of, on average 9%. Furthermore the results of concurrent investigations into block-based parallel Huffman encoding and Zero-length Encoding are compared to the predictive scheme and it was found that the predictive scheme obtains approximately 4%-5% better compression ratios than the Zero-Length Encoder and is 25 times faster than Huffman encoding on an Intel Xeon E5 processor. The scheme may be well-suited to address the large network bandwidth requirements of the MeerKAT project

    Programming issues for video analysis on Graphics Processing Units

    Get PDF
    El procesamiento de vídeo es la parte del procesamiento de señales, donde las señales de entrada y/o de salida son secuencias de vídeo. Cubre una amplia variedad de aplicaciones que son, en general, de cálculo intensivo, debido a su complejidad algorítmica. Por otra parte, muchas de estas aplicaciones exigen un funcionamiento en tiempo real. El cumplimiento de estos requisitos hace necesario el uso de aceleradores hardware como las Unidades de Procesamiento Gráfico (GPU). El procesamiento de propósito general en GPU representa una tendencia exitosa en la computación de alto rendimiento, desde el lanzamiento de la arquitectura y el modelo de programación NVIDIA CUDA. Esta tesis doctoral trata sobre la paralelización eficiente de aplicaciones de procesamiento de vídeo en GPU. Este objetivo se aborda desde dos vertientes: por un lado, la programación adecuada de la GPU para aplicaciones de vídeo; por otro lado, la GPU debe ser considerada como parte de un sistema heterogéneo. Dado que las secuencias de vídeo se componen de fotogramas, que son estructuras de datos regulares, muchos componentes de las aplicaciones de vídeo son inherentemente paralelizables. Sin embargo, otros componentes son irregulares en el sentido de que llevan a cabo cálculos que dependen de la carga de trabajo, sufren contención en la escritura, contienen partes inherentemente secuenciales o desbalanceadas en carga... Esta tesis propone estrategias para hacer frente a estos aspectos, a través de varios casos de estudio. También se describe una aproximación optimizada al cálculo de histogramas basada en un modelo de rendimiento de la memoria. Las secuencias de vídeo son flujos continuos que deben ser transferidos desde el ¿host¿ (CPU) al dispositivo (GPU), y los resultados del dispositivo al ¿host¿. Esta tesis doctoral propone el uso de CUDA streams para implementar el paradigma de ¿stream processing¿ en la GPU, con el fin de controlar la ejecución simultánea de las transferencias de datos y de la computación. También propone modelos de rendimiento que permiten una ejecución óptima

    Doctor of Philosophy

    Get PDF
    dissertationAs the base of the software stack, system-level software is expected to provide ecient and scalable storage, communication, security and resource management functionalities. However, there are many computationally expensive functionalities at the system level, such as encryption, packet inspection, and error correction. All of these require substantial computing power. What's more, today's application workloads have entered gigabyte and terabyte scales, which demand even more computing power. To solve the rapidly increased computing power demand at the system level, this dissertation proposes using parallel graphics pro- cessing units (GPUs) in system software. GPUs excel at parallel computing, and also have a much faster development trend in parallel performance than central processing units (CPUs). However, system-level software has been originally designed to be latency-oriented. GPUs are designed for long-running computation and large-scale data processing, which are throughput-oriented. Such mismatch makes it dicult to t the system-level software with the GPUs. This dissertation presents generic principles of system-level GPU computing developed during the process of creating our two general frameworks for integrating GPU computing in storage and network packet processing. The principles are generic design techniques and abstractions to deal with common system-level GPU computing challenges. Those principles have been evaluated in concrete cases including storage and network packet processing applications that have been augmented with GPU computing. The signicant performance improvement found in the evaluation shows the eectiveness and eciency of the proposed techniques and abstractions. This dissertation also presents a literature survey of the relatively young system-level GPU computing area, to introduce the state of the art in both applications and techniques, and also their future potentials

    Compiling Data Dependent Control Flow on SIMD GPUs

    Get PDF
    Current Graphic Processing Units (GPUs) (circa. 2003/2004) have programmable vertex and fragment units. Often these units are implemented as SIMD processors employing parallel pipelines. Data dependent conditional execution on SIMD architectures implemented using processor idling is inefficient. I propose a multi-pass approach based on conditional streams which allows dynamic load balancing of the fragment units of the GPU and better theoretical performance on programs using data dependent conditionals and loops. The proposed system can be used to turn the fragment unit of a SIMD GPU into a stream processor with data dependent control flow

    Accelerating Numerical Simulations on Multiple GPUs with Multiple CUDA Streams Applied on a Sediment-Transport Model for Dual Lithologies

    Get PDF
    Improving the overall computational time is one of the challenges in scientific computing today. Mathematical models and quantitative analysis techniques are used to solve a big specter of scientific problems. Numerical simulations can be performed in many various fields and with different objectives, such as reconstructing and understanding events like earthquakes and tsunamis, or predicting the future like a weather forecast or predicting unobserved events such as where to find oil. Other fields where this is used include medical applications, various physical phenomenon and rocket science. Performing simulations of large data have been very slow or impossible to do on desktop computers or laptops. This is due to the limited processing capacity of these computers' Central Processing Unit (CPU). This thesis has investigated the field of High Performance Computing (HPC) and the possibility of running the numerical simulations in parallel on the many cores on the Graphics Processing Unit (GPU), exploring General--Purpose Computing on Graphics Processing Units (GPGPU), and observed that the computations perform much faster, and yield results with the same accuracy as a CPU. It has also investigated the possibility of coupling multiple GPUs, and observed additional speedup. This was tested on a sediment transport model for dual lithologies, a coupled system of Partial Differential Equations (PDEs) which was discretized with a fully explicit scheme using a finite difference method Forward-Time Central-Space (FTCS). The implementations was developed for NVIDIA GPUs exploiting the Compute Unified Device Architecture (CUDA) utilizing the CUDA C extension to the ANSI C programming language. The results derived in this research showed that numerical simulations performed on multiple GPUs yield results with the same accuracy as on a singe CPU, and with a very significant enhancement in performance
    corecore