181 research outputs found

    Low weight additive manufacturing FBG accelerometer: design, characterization and testing

    Get PDF
    Structural Health Monitoring is considered the process of damage detection and structural characterization by any type of on-board sensors. Fibre Bragg Gratings (FBG) are increasing their popularity due to their many advantages like easy multiplexing, negligible weight and size, high sensitivity, inert to electromagnetic fields, etc. FBGs allow obtaining directly strain and temperature, and other magnitudes can also be measured by the adaptation of the Bragg condition. In particular, the acceleration is of special importance for dynamic analysis. In this work, a low weight accelerometer has been developed using a FBG. It consists in a hexagonal lattice hollow cylinder designed with a resonance frequency above 500 Hz. A Finite Element Model (FEM) was used to analyse dynamic behaviour of the sensor. Then, it was modelled in a CAD software and exported to additive manufacturing machines. Finally, a characterization test campaign was carried out obtaining a sensitivity of 19.65 pm/g. As a case study, this paper presents the experimental modal analysis of the wing of an Unmanned Aerial Vehicle. The measurements from piezoelectric, MEMS accelerometers, embedded FBGs sensors and the developed FBG accelerometer are compared.Ministerio de Economía y Competitividad BIA2013-43085-P y BIA2016-75042-C2-1-

    Overview of sensors suitable for active flow control methods

    Get PDF
    Hlavným cieľom tejto bakalárskej práce bolo vytvorenie prehľadu vyvíjaných a už aplikovaných senzorov pre účely aktívneho riadenia prúdov. Senzory musia splňovať niektoré podmienky, preto výber senzorov bol naviazaný na reálnych výsledkoch testovacích programov, popis ktorých tvorí prvú časť tejto bakalárskej práce. Opis technológie a princíp fungovania senzorov je popísaný v druhej časti tejto práce.The main purpose of this bachelor thesis was to create the overview of the sensors developed for the future active flow control applications and overview the sensors already used in the active flow control applications. The sensors have to fulfil several requirements, so selection for the overview was based on the real flight test programs results, which were described in the first part of the thesis. The sensors technology description and operation principles were included in the second part of the thesis

    Dynamic strain measurements on automotive and aeronautic composite components by means of embedded fiber bragg grating sensors

    Get PDF
    The measurement of the internal deformations occurring in real-life composite components is a very challenging task, especially for those components that are rather difficult to access. Optical fiber sensors can overcome such a problem, since they can be embedded in the composite materials and serve as in situ sensors. In this article, embedded optical fiber Bragg grating (FBG) sensors are used to analyze the vibration characteristics of two real-life composite components. The first component is a carbon fiber-reinforced polymer automotive control arm; the second is a glass fiber-reinforced polymer aeronautic hinge arm. The modal parameters of both components were estimated by processing the FBG signals with two interrogation techniques: the maximum detection and fast phase correlation algorithms were employed for the demodulation of the FBG signals; the Peak-Picking and PolyMax techniques were instead used for the parameter estimation. To validate the FBG outcomes, reference measurements were performed by means of a laser Doppler vibrometer. The analysis of the results showed that the FBG sensing capabilities were enhanced when the recently-introduced fast phase correlation algorithm was combined with the state-of-the-art PolyMax estimator curve fitting method. In this case, the FBGs provided the most accurate results, i.e., it was possible to fully characterize the vibration behavior of both composite components. When using more traditional interrogation algorithms (maximum detection) and modal parameter estimation techniques (Peak-Picking), some of the modes were not successfully identified

    Design and investigation of a reusable surface-mounted optical fiber Bragg grating strain sensor

    Get PDF

    Study of Packaging and Installation of FBG Sensors for Monitoring of Aircraft Systems

    Get PDF
    Next generation aircraft systems will feature an ever increasing complexity. In this context, advanced health monitoring strategies will be required to ensure a high level of operations safety as well as a good reliability. Hence, Prognostics and Health Management (PHM) is emerging as an enabling discipline for future advanced aircraft design and operations, with a particular application to Flight Control System (FCS) monitoring. One of the most critical issues for real-time Fault Detection and Identification (FDI) of aircraft FCS is the availability of actuator load measurements. The aerodynamic load on flight control actuators has a significant influence on their dynamic response, and can easily hide the effect of incipient failure precursors. For this reason, real-time monitoring FDI algorithms relying on the comparison between the actual system response and that of a digital twin require either a measure or an estimation of aerodynamic loads. Usually, this quantity is not monitored by a dedicated sensor, since it is not required as a feedback signal by most control logics. A dedicated load sensor for PHM with traditional technologies is not easily feasible: for example, a load cell would be mechanically connected in series with the actuator, adding a potential single failure point and affecting the overall system safety; the use of strain gages on the structure is less accurate, and requires several sensors with individual wiring and complex signal conditioning circuitry. Optical strain sensors based on Fiber Bragg Gratings (FBG) allow indirect load measurement combined with real-time structural monitoring, combining an acceptable increase in complexity and costs with a high robustness. In this preliminary study, we installed an FBG monitoring system on a UAV to assess the feasibility of such technology. Measures of structure deflection were correlated to actuator position and IMU data, to estimate aerodynamic loads

    Shape sensing of variable stiffness soft robots using electrical impedance tomography

    Get PDF
    Soft robotic systems offer benefits over traditional rigid systems through reduced contact trauma with soft tissues and by enabling access through tortuous paths in minimally invasive surgery. However, the inherent deformability of soft robots places both a greater onus on accurate modelling of their shape, and greater challenges in realising intraoperative shape sensing. Herein we present a proprioceptive (self-sensing) soft actuator, with an electrically conductive working fluid. Electrical impedance measurements from up to six electrodes enabled tomographic reconstructions using Electrical Impedance Tomography (EIT). A new Frequency Division Multiplexed (FDM) EIT system was developed capable of measurements of 66 dB SNR with 20 ms temporal resolution. The concept was examined in two two-degree-of-freedom designs: a hydraulic hinged actuator and a pneumatic finger actuator with hydraulic beams. Both cases demonstrated that impedance measurements could be used to infer shape changes, and EIT images reconstructed during actuation showed distinct patterns with respect to each degree of freedom (DOF). Whilst there was some mechanical hysteresis observed, the repeatability of the measurements and resultant images was high. The results show the potential of FDM-EIT as a low-cost, low profile shape sensor in soft robots

    Design and Evaluation of a 3-D Printed Optical Sensor for Monitoring Finger Flexion

    Get PDF
    The development of techniques for monitoring finger movement is becoming increasingly important in areas, such as robotics, virtual reality, and rehabilitation. To date, various techniques have been proposed for tracking hand movements, but the majority suffer from poor accuracy and repeatability. Inspired by the articulated structure of finger joints, we propose a novel 3-D printed optical sensor with a compact hinged configuration for tracking finger flexion. This sensor exploits Malus' law using the attenuation of light transmitted through crossed polarizers. The sensor consists of a single LED, two pieces of linear polarizing film, and a photodetector that detects the changes in polarized light intensity proportional to the angle of finger flexion. This paper presents the characterization of the proposed optical sensor and compares it with a commonly used commercial bend sensor. Results show that the bend sensor exhibits hysteresis error, low sensitivity at small angles, and significant temporal drift. In contrast, the optical sensor is more accurate (±0.5°) in the measuring range from 0° to 90°, and exhibits high repeatability and stability, as well as a fast dynamic response. Overall, the optical sensor outperforms the commercial bend sensor, and shows excellent potential for monitoring hand movements in real time

    DISTRIBUTED ELECTRO-MECHANICAL ACTUATION AND SENSING SYSTEM DESIGN FOR MORPHING STRUCTURES

    Get PDF
    Smart structures, able to sense changes of their own state or variations of the environment they’re in, and capable of intervening in order to improve their performance, find themselves in an ever-increasing use among numerous technology fields, opening new frontiers within advanced structural engineering and materials science. Smart structures represent of course a current challenge for the application on the aircrafts. A morphing structure can be considered as the result of the synergic integration of three main systems: the structural system, based on reliable kinematic mechanisms or on compliant elements enabling the shape modification, the actuation and control systems, characterized by embedded actuators and robust control strategies, and the sensing system, usually involving a network of sensors distributed along the structure to monitor its state parameters. Technologies with ever increasing maturity level are adopted to assure the consolidation of products in line with the aeronautical industry standards and fully compliant with the applicable airworthiness requirements. Until few years ago, morphing wing technology appeared an utopic solution. In the aeronautical field, airworthiness authorities demand a huge process of qualification, standardization, and verification. Essential components of an intelligent structure are sensors and actuators. The actual technological challenge, envisaged in the industrial scenario of “more electric aircraft”, will be to replace the heavy conventional hydraulic actuators with a distributed strategy comprising smaller electro-mechanical actuators. This will bring several benefit at the aircraft level: firstly, fuel savings. Additionally, a full electrical system reduces classical drawbacks of hydraulic systems and overall complexity, yielding also weight and maintenance benefits. At the same time, a morphing structure needs a real-time strain monitoring system: a nano-engineered polymer capable of densely distributed strain sensing can be a suitable solution for this kind of flying systems. Piezoresistive carbon nanotubes can be integrated as thin films coated and integrated with composite to form deformable self-sensing materials. The materials actually become sensors themselves without using external devices, embedded or attached. This doctoral thesis proposes a multi-disciplinary investigation of the most modern actuation and sensing technologies for variable-shaped devices mainly intended for large commercial aircraft. The personal involvement in several research projects with numerous international partners - during the last three years - allowed for exploiting engineering outcomes in view of potential certification and industrialization of the studied solutions. Moving from a conceptual survey of the smart systems that introduces the idea of adaptive aerodynamic surfaces and main research challenges, the thesis presents (Chapter 1) the current worldwide status of morphing technologies as well as industrial development expectations. The Ph.D. programme falls within the design of some of the most promising and potentially flyable solutions for performance improvement of green regional aircrafts. A camber-morphing aileron and a multi-modal flap are herein analysed and assessed as subcomponents involved for the realization of a morphing wing. An innovative camber-morphing aileron was proposed in CRIAQ MD0-505, a joint Canadian and Italian research project. Relying upon the experimental evidence within the present research, the issue appeared concerns the critical importance of considering the dynamic modelling of the actuators in the design phase of a smart device. The higher number of actuators involved makes de facto the morphing structure much more complex. In this context (Chapter 2), the action of the actuators has been modelled within the numerical model of the aileron: the comparison between the modal characteristics of numerical predictions and testing activities has shown a high level of correlation. Morphing structures are characterized by many more degrees of freedom and increased modal density, introducing new paradigms about modelling strategies and aeroelastic approaches. These aspects affect and modify many aspects of the traditional aeronautical engineering process, like simulation activity, design criteria assessment, and interpretation of the dynamic response (Chapter 3). With respect the aforementioned aileron, sensitivity studies were carried out in compliance with EASA airworthiness requirements to evaluate the aero-servo-elastic stability of global system with respect to single and combined failures of the actuators enabling morphing. Moreover, the jamming event, which is one of the main drawbacks associated with the use of electro-mechanical actuators, has been duly analyzed to observe any dynamic criticalities. Fault & Hazard Analysis (FHA) have been therefore performed as the basis for application of these devices to real aircraft. Nevertheless, the implementation of an electro-mechanical system implies several challenges related to the integration at aircraft system level: the practical need for real-time monitoring of morphing devices, power absorption levels and dynamic performance under aircraft operating conditions, suggest the use of a ground-based engineering tool, i.e. “iron bird”, for the physical integration of systems. Looking in this perspective, the Chapter 4 deals with the description of an innovative multi-modal flap idealized in the Clean Sky - Joint Technology Initiative research scenario. A distributed gear-drive electro-mechanical actuation has been fully studied and validated by an experimental campaign. Relying upon the experience gained, the encouraging outcomes led to the second stage of the project, Clean Sky 2 - Airgreen 2, encompassing the development of a more robotized flap for next regional aircraft. Numerical and experimental activities have been carried out to support the health management process in order to check the EMAs compatibility with other electrical systems too. A smart structure as a morphing wing needs an embedded sensing system in order to measure the actual deformation state as well as to “monitor” the structural conditions. A new possible approach in order to have a distributed light-weight system consists in the development of polymer-based materials filled with conductive smart fillers such as carbon nanotubes (CNTs). The thesis ends with a feasibility study about the incorporation of carbon nanomaterials into flexible coatings for composite structures (Chapter 5). Coupons made of MWCNTs embedded in typical aeronautic epoxy formulation were prepared and tested under different conditions in order to better characterize their sensing performance. Strain sensing properties were compared to commercially available strain gages and fiber optics. The results were obtained in the last training year following the involvement of the author in research activities at the University of Salerno and Materials and Structures Centre - University of Bath. One of the issues for the next developments is to consolidate these novel technologies in the current and future European projects where the smart structures topic is considered as one of the priorities for the new generation aircrafts. It is remarkable that scientists and aeronautical engineers community does not stop trying to create an intelligent machine that is increasingly inspired by nature. The spirit of research, the desire to overcome limits and a little bit of imagination are surely the elements that can guide in achieving such an ambitious goal

    Interaction of composites with various types of embedded sensors and their use for cure and fatigue life monitoring

    Get PDF
    corecore