244 research outputs found

    Design of a Soil Erosion Warning System in Watersheds Based on Arduino Uno

    Get PDF
    Tropical climate conditions with two seasons, namely rainy and hot in Indonesia and coupled with relatively diverse surface and rock topography conditions, have the potential for natural disasters, one of which is erosion in watersheds. Making the system using the Arduino Uno microcontroller, SIM-800L V2 Module, Piezoelectric Sensor, Soil Moisture Sensor, Buzzer and LCD. The designed system will be able to display information on the spot, and can send via SMS. In pre-erosion conditions, there are two variables used, namely soil moisture and soil vibration. As for post-erosion, it only takes the soil vibration variable. The limit value of vibration in pre-erosion conditions is 31%. Pre-erosion data is divided into 3 statuses, namely BEWARE at humidity values of 31-70% and vibration values of 5-15%, DANGER status with humidity values of 71-100% or vibration values of 16-30%, and other than that they are included in the SAFE category. Whereas in post-erosion 3 categories are LIGHT EROSION at vibration values of 31-50%, MODERATE EROSION 51-70% and SEVERE EROSION 71-100%

    Quantification of landslide velocity from active waveguide generated acoustic emission

    Get PDF
    Acoustic emission (AE) has become an established approach to monitor stability of soil slopes. However, the challenge has been to develop strategies to interpret and quantify deformation behaviour from the measured AE. AE monitoring of soil slopes commonly utilises an active waveguide which is installed in a borehole through the slope and comprises a metal waveguide rod or tube with a granular backfill surround. When the host slope deforms, the column of granular backfill also deforms and this generates AE that can propagate along the waveguide. Presented in the paper are results from the commissioning of dynamic shear apparatus used to subject full scale active waveguide models to simulated slope movements. The results confirm that AE rates generated are proportional to the rate of deformation, and the coefficient of proportionality that defines the relationship has been quantified (e.g. 4.4 x 105 for the angular gravel examined). The authors demonstrate that slope velocities can be quantified continuously in real-time through monitoring active waveguide generated AE during a slope failure simulation. The results show that the technique can quantify landslide velocity to better than an order of magnitude (i.e. consistent with standard landslide movement classification) and can therefore be used to provide an early warning of slope instability through detecting and quantifying accelerations of slope movement

    Development of an acoustic emission waveguide-based system for monitoring of rock slope deformation mechanisms

    Get PDF
    Hundreds of thousands of landslides occur every year around the world impacting on people's lives. Monitoring techniques able to foresee imminent collapse and provide a warning in time useful for action to be taken are essential for risk reduction and disaster prevention. Acoustic emission (AE) is generated in soil and rock materials by rearrangement of particles during displacement or increasing damage in the microstructure preceding a collapse; therefore AE is appropriate for estimation of slope deformation. To overcome the high attenuation that characterise geological materials and thus to be able to monitor AE activity, a system called Slope ALARMS that makes use of a waveguide to transmit AE waves from a deforming zone to a piezoelectric transducer was developed. The system quantifies acoustic activity as Ring Down Count (RDC) rates. In soil applications RDC rates have been correlated with the rate of deformation, however, the application to rock slopes poses new challenges over the significance of the measured AE trends, requiring new interpretation strategies. In order to develop new approaches to interpret acoustic emission rates measured within rock slopes, the system was installed at two trial sites in Italy and Austria. RDC rates from these sites, which have been measured over 6 and 2.5 years respectively, are analysed and clear and recurring trends were identified. The comparison of AE trends with response from a series of traditional instruments available at the sites allowed correlation with changes in external slope loading and internal stress changes. AE signatures from the limestone slope at the Italian site have been identified as generated in response to variations in the groundwater level and snow loading. At the conglomerate slope in Austria, AE signatures include the detachment of small boulders from the slope surface caused by the succession of freeze-thaw cycles during winter time. Consideration was also given to laboratory testing of specific system elements and field experiments. A framework towards strategies to interpret measured acoustic emission trends is provided for the use of the system within rock slopes

    Micro Wave Energy Farming on Slender Pile Structure

    Get PDF
    The development of renewable energy technology has mostly beenfocused on macro-sized farming models. Recent studies have explored the benefits of micro wave energy to support offshore sensor networks. This paper discusses the viability of micro ocean energy farming of wave energy on slender pile structure through piezoelectric converters. Case study was obtained using Tuban environmental data from the year 2004-2009. Significant wave height and period were used to generate wave forces on slender pile and converted to electrical energy using simple piezoelectric converter equations. The resulting wave force on a 0.03m thick piezoelectric plate generates voltage of 0.6 Volt

    Generation and propagation of acoustic emissions in buried steel infrastructure for monitoring soil–structure interactions

    Get PDF
    Soil–structure systems (e.g. pipelines, pile foundations, retaining structures) deteriorate with time and experience relative deformations between the soil and structural elements. Whether a result of age, working conditions, or environmental conditions, deformations have the potential to cause catastrophic social, economic, and environmental issues, including limit state failure (fatigue, serviceability, ultimate). The UK spends £100s of millions a year spent on infrastructural maintenance; the early detection of deterioration processes could reduce this spend by an order of magnitude.Techniques to monitor ground instability and deterioration are consequently increasing in use, with most conventional approaches providing localised information on deformation at discrete time intervals. Nascent technologies (e.g. ShapeAccelArray, fibre optics) are however beginning to provide continuous measurements, allowing for near real-time observations to be made, although none are without either technical limitation or prohibitive cost.A novel monitoring system is proposed, whereby pre-existing and newly built steel infrastructure (e.g. utility pipes, pile foundations) are employed as waveguides to measure soil-steel interaction-generated AE using piezoelectric sensors. With this, a two-stage quantitative framework for understanding soil-steel interaction-generated AE and its propagation through steel structures is also developed where (stage 1) informs the creation of an adaptable sensor network for a variety of infrastructure systems, and stage (2) informs interpretations of the collected AE data to allow for decision makers to take appropriate action. Timely actions made possible by such a framework is of great significance to practitioners, having the potential to reduce the direct and indirect impacts of deterioration and deformation, whether long- and short-term.Stage 1 used an extensive programme of computational models, alongside small- and large-scale physical models, to enable attenuation coefficients to be quantified for a range of soil types. It was shown that both the structure and bounding materials, i.e. the burial system, significantly influenced propagation and attenuation through steel structures. In free-systems, though, the frequency-thickness product was more influential; propagation distances of 100s of metres are obtained at products Stage 2 used a programme of large direct-shear box tests to allow for relationships between AE and normal effective stress, mobilised shearing resistance, and shearing velocity to be quantified. This enabled for quantitative interpretations of soil-steel interaction behaviours to be made using various AE parameters. Both the magnitude of values, and the rates of change of the parameters, could be used in the interpretation of behaviours. Shearing and stress conditions of sand could also be determined, increasing proportionally with AE activity, whilst the point at which full shear strength mobilisation occurs was also identifiable.</div

    IoT-based Lava Flood Early Warning System with Rainfall Intensity Monitoring and Disaster Communication Technology

    Get PDF
    A lava flood disaster is a volcanic hazard that often occurs when heavy rains are happening at the top of a volcano. This flood carries volcanic material from upstream to downstream of the river, affecting populous areas located quite far from the volcano peak. Therefore, an advanced early warning system of cold lava floods is inarguably vital. This paper aims to present a reliable, remote, Early Warning System (EWS) specifically designed for lava flood detection, along with its disaster communication system. The proposed system consists of two main subsystems: lava flood detection and disaster communication systems. It utilizes a modified automatic rain gauge; a novel configured vibration sensor; Fuzzy Tree Decision algorithm; ESP microcontrollers that support IoT, and disaster communication tools (WhatsApp, SMS, radio communication). According to the experiment results, the prototype of rainfall detection using the tipping bucket rain gauge sensor can measure heavy and moderate rainfall intensities with 81.5% accuracy. Meanwhile, the prototype of earthquake vibration detection using a geophone sensor can remove noise from car vibrations with a Kalman filter and measure vibrations in high and medium intensity with an accuracy of 89.5%. Measurements from sensors are sent to the webserver. The disaster mitigation team uses data from the webserver to evacuate residents using the disaster communication method. The proposed system was successfully implemented in Mount Merapi, Indonesia, coordinated with the local Disaster Deduction Risk (DDR) forum. Doi: 10.28991/esj-2021-SP1-011 Full Text: PD

    A Review of Wearable Sensor Systems to Monitor Plantar Loading in the Assessment of Diabetic Foot Ulcers

    Get PDF
    Diabetes is highly prevalent throughout the world and imposes a high economic cost on countries at all income levels. Foot ulceration is one devastating consequence of diabetes, which can lead to amputation and mortality. Clinical assessment of diabetic foot ulcer (DFU) is currently subjective and limited, impeding effective diagnosis, treatment and prevention. Studies have shown that pressure and shear stress at the plantar surface of the foot plays an important role in the development of DFUs. Quantification of these could provide an improved means of assessment of the risk of developing DFUs. However, commercially-available sensing technology can only measure plantar pressures, neglecting shear stresses and thus limiting their clinical utility. Research into new sensor systems which can measure both plantar pressure and shear stresses are thus critical. Our aim in this paper is to provide the reader with an overview of recent advances in plantar pressure and stress sensing and offer insights into future needs in this critical area of healthcare. Firstly, we use current clinical understanding as the basis to define requirements for wearable sensor systems capable of assessing DFU. Secondly, we review the fundamental sensing technologies employed in this field and investigate the capabilities of the resultant wearable systems, including both commercial and research-grade equipment. Finally, we discuss research trends, ongoing challenges and future opportunities for improved sensing technologies to monitor plantar loading in the diabetic foot

    Temporary cable force monitoring techniques during bridge construction-phase: the Tajo River Viaduct experience

    Get PDF
    This article deals with the comparative analysis of current cable force monitoring techniques. In addition, the experience of three cable stress monitoring techniques during the construction phase is included: (a) the installation of load cells on the active anchorages of the cables, (b) the installation of unidirectional strain gauges, and (c) the evaluation of stresses in cables applying the vibrating wire technique by means of the installation of accelerometers. The main advantages and disadvantages of each technique analysed are highlighted in the Construction Process context of the Tajo Viaduct, one of the most singular viaducts recently built in Spain.This work has received funding from the European’s Union Horizon 2020 research and innovation program under the Grant Agreement No. 769373 (FORESEE project)

    NUMERICAL AND EXPERIMENTAL STUDY OF BIO-INSPIRED VIBRATION SENSING AND ISOLATION DEVICES: INTEGRATION OF BIOMIMETICS AND 3D PRINTING TECHNOLOGY

    Get PDF
    Statocyst is the balancing and sensing organ of the cephalopods (octopus, squid and cuttlefish). Previous studies have shown the macula/statolith part of the statocyst is the linear acceleration sensing system of the water particle motion. Although a few differences primarily in gross morphology exist, the macula/statolith part of the statocyst shows a striking number of similarities in structure and function among different cephalopods. In this study, the macula/statolith part of the statocyst is investigated by means of mechanics method. Specifically, based on the geometry and material property of macula/statolith from three cephalopod species (Octopus vulgaris, Sepia officinalis and Loligo vulgaris), a second order dynamic oscillator model was used to simulate its frequency response to the water particle motion. The acceleration detection threshold spectra comparison between the modeling analysis and the experiment data verifies that the cephalopods are sensitive to the water particle motion (acceleration) in the low (infrasound) frequency range. As an integral part of this research, the characteristics of kinocilia bundle which is the mechanoreceptive part of macula/statolith are also studied by interpreting the interaction between kinocilia bundle and statolith in a fluid-structure-interaction (FSI) numerical model. A parametric study of the kinocilia/statolith numerical model is conducted to improve the understanding of the sensing mechanism of the kinocilia bundle interaction with the statolith. Inspired by this interaction phenomenon, a bio-inspired vibration sensor and a bio-inspired isolation element are conceptually developed and numerically studied. The numerical simulation result implies that the frequency response behavior observed in the kinocilia bundle model from FSI analysis is also seen in both engineering designs, and this behavior could be equivalently described by the Maxwell model and SLS model for these two designs, respectively. Lastly, by taking advantage of 3D printing technology, a prototype bio-inspired vibration sensor was fabricated in the lab and subsequently tested to characterize its sensing behavior. A comparison between the experimental data and predictions from a theoretical model suggests that the frequency response of the bio-inspired sensor design is equivalent to the convolution of the frequency response of a 2nd-order oscillator and the sensor's inner beam. This unique feature enables the development of two potential motion sensor designs (jerk sensor and velocity sensor)
    • …
    corecore