137 research outputs found

    Tradition and Innovation in Construction Project Management

    Get PDF
    This book is a reprint of the Special Issue 'Tradition and Innovation in Construction Project Management' that was published in the journal Buildings

    Learning-based Wavelet-like Transforms For Fully Scalable and Accessible Image Compression

    Full text link
    The goal of this thesis is to improve the existing wavelet transform with the aid of machine learning techniques, so as to enhance coding efficiency of wavelet-based image compression frameworks, such as JPEG 2000. In this thesis, we first propose to augment the conventional base wavelet transform with two additional learned lifting steps -- a high-to-low step followed by a low-to-high step. The high-to-low step suppresses aliasing in the low-pass band by using the detail bands at the same resolution, while the low-to-high step aims to further remove redundancy from detail bands by using the corresponding low-pass band. These two additional steps reduce redundancy (notably aliasing information) amongst the wavelet subbands, and also improve the visual quality of reconstructed images at reduced resolutions. To train these two networks in an end-to-end fashion, we develop a backward annealing approach to overcome the non-differentiability of the quantization and cost functions during back-propagation. Importantly, the two additional networks share a common architecture, named a proposal-opacity topology, which is inspired and guided by a specific theoretical argument related to geometric flow. This particular network topology is compact and with limited non-linearities, allowing a fully scalable system; one pair of trained network parameters are applied for all levels of decomposition and for all bit-rates of interest. By employing the additional lifting networks within the JPEG2000 image coding standard, we can achieve up to 17.4% average BD bit-rate saving over a wide range of bit-rates, while retaining the quality and resolution scalability features of JPEG2000. Built upon the success of the high-to-low and low-to-high steps, we then study more broadly the extension of neural networks to all lifting steps that correspond to the base wavelet transform. The purpose of this comprehensive study is to understand what is the most effective way to develop learned wavelet-like transforms for highly scalable and accessible image compression. Specifically, we examine the impact of the number of learned lifting steps, the number of layers and the number of channels in each learned lifting network, and kernel support in each layer. To facilitate the study, we develop a generic training methodology that is simultaneously appropriate to all lifting structures considered. Experimental results ultimately suggest that to improve the existing wavelet transform, it is more profitable to augment a larger wavelet transform with more diverse high-to-low and low-to-high steps, rather than developing deep fully learned lifting structures

    Low-complexity Multidimensional DCT Approximations

    Full text link
    In this paper, we introduce low-complexity multidimensional discrete cosine transform (DCT) approximations. Three dimensional DCT (3D DCT) approximations are formalized in terms of high-order tensor theory. The formulation is extended to higher dimensions with arbitrary lengths. Several multiplierless 8×8×88\times 8\times 8 approximate methods are proposed and the computational complexity is discussed for the general multidimensional case. The proposed methods complexity cost was assessed, presenting considerably lower arithmetic operations when compared with the exact 3D DCT. The proposed approximations were embedded into 3D DCT-based video coding scheme and a modified quantization step was introduced. The simulation results showed that the approximate 3D DCT coding methods offer almost identical output visual quality when compared with exact 3D DCT scheme. The proposed 3D approximations were also employed as a tool for visual tracking. The approximate 3D DCT-based proposed system performs similarly to the original exact 3D DCT-based method. In general, the suggested methods showed competitive performance at a considerably lower computational cost.Comment: 28 pages, 5 figures, 5 table

    Exploring Animal Behavior Through Sound: Volume 1

    Get PDF
    This open-access book empowers its readers to explore the acoustic world of animals. By listening to the sounds of nature, we can study animal behavior, distribution, and demographics; their habitat characteristics and needs; and the effects of noise. Sound recording is an efficient and affordable tool, independent of daylight and weather; and recorders may be left in place for many months at a time, continuously collecting data on animals and their environment. This book builds the skills and knowledge necessary to collect and interpret acoustic data from terrestrial and marine environments. Beginning with a history of sound recording, the chapters provide an overview of off-the-shelf recording equipment and analysis tools (including automated signal detectors and statistical methods); audiometric methods; acoustic terminology, quantities, and units; sound propagation in air and under water; soundscapes of terrestrial and marine habitats; animal acoustic and vibrational communication; echolocation; and the effects of noise. This book will be useful to students and researchers of animal ecology who wish to add acoustics to their toolbox, as well as to environmental managers in industry and government

    GQE-Net: A Graph-based Quality Enhancement Network for Point Cloud Color Attribute

    Full text link
    In recent years, point clouds have become increasingly popular for representing three-dimensional (3D) visual objects and scenes. To efficiently store and transmit point clouds, compression methods have been developed, but they often result in a degradation of quality. To reduce color distortion in point clouds, we propose a graph-based quality enhancement network (GQE-Net) that uses geometry information as an auxiliary input and graph convolution blocks to extract local features efficiently. Specifically, we use a parallel-serial graph attention module with a multi-head graph attention mechanism to focus on important points or features and help them fuse together. Additionally, we design a feature refinement module that takes into account the normals and geometry distance between points. To work within the limitations of GPU memory capacity, the distorted point cloud is divided into overlap-allowed 3D patches, which are sent to GQE-Net for quality enhancement. To account for differences in data distribution among different color omponents, three models are trained for the three color components. Experimental results show that our method achieves state-of-the-art performance. For example, when implementing GQE-Net on the recent G-PCC coding standard test model, 0.43 dB, 0.25 dB, and 0.36 dB Bjontegaard delta (BD)-peak-signal-to-noise ratio (PSNR), corresponding to 14.0%, 9.3%, and 14.5% BD-rate savings can be achieved on dense point clouds for the Y, Cb, and Cr components, respectively.Comment: 13 pages, 11 figures, submitted to IEEE TI

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Discontinuity-Aware Base-Mesh Modeling of Depth for Scalable Multiview Image Synthesis and Compression

    Full text link
    This thesis is concerned with the challenge of deriving disparity from sparsely communicated depth for performing disparity-compensated view synthesis for compression and rendering of multiview images. The modeling of depth is essential for deducing disparity at view locations where depth is not available and is also critical for visibility reasoning and occlusion handling. This thesis first explores disparity derivation methods and disparity-compensated view synthesis approaches. Investigations reveal the merits of adopting a piece-wise continuous mesh description of depth for deriving disparity at target view locations to enable disparity-compensated backward warping of texture. Visibility information can be reasoned due to the correspondence relationship between views that a mesh model provides, while the connectivity of a mesh model assists in resolving depth occlusion. The recent JPEG 2000 Part-17 extension defines tools for scalable coding of discontinuous media using breakpoint-dependent DWT, where breakpoints describe discontinuity boundary geometry. This thesis proposes a method to efficiently reconstruct depth coded using JPEG 2000 Part-17 as a piece-wise continuous mesh, where discontinuities are driven by the encoded breakpoints. Results show that the proposed mesh can accurately represent decoded depth while its complexity scales along with decoded depth quality. The piece-wise continuous mesh model anchored at a single viewpoint or base-view can be augmented to form a multi-layered structure where the underlying layers carry depth information of regions that are occluded at the base-view. Such a consolidated mesh representation is termed a base-mesh model and can be projected to many viewpoints, to deduce complete disparity fields between any pair of views that are inherently consistent. Experimental results demonstrate the superior performance of the base-mesh model in multiview synthesis and compression compared to other state-of-the-art methods, including the JPEG Pleno light field codec. The proposed base-mesh model departs greatly from conventional pixel-wise or block-wise depth models and their forward depth mapping for deriving disparity ingrained in existing multiview processing systems. When performing disparity-compensated view synthesis, there can be regions for which reference texture is unavailable, and inpainting is required. A new depth-guided texture inpainting algorithm is proposed to restore occluded texture in regions where depth information is either available or can be inferred using the base-mesh model

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    High throughput image compression and decompression on GPUs

    Get PDF
    Diese Arbeit befasst sich mit der Entwicklung eines GPU-freundlichen, intra-only, Wavelet-basierten Videokompressionsverfahrens mit hohem Durchsatz, das für visuell verlustfreie Anwendungen optimiert ist. Ausgehend von der Beobachtung, dass der JPEG 2000 Entropie-Kodierer ein Flaschenhals ist, werden verschiedene algorithmische Änderungen vorgeschlagen und bewertet. Zunächst wird der JPEG 2000 Selective Arithmetic Coding Mode auf der GPU realisiert, wobei sich die Erhöhung des Durchsatzes hierdurch als begrenzt zeigt. Stattdessen werden zwei nicht standard-kompatible Änderungen vorgeschlagen, die (1) jede Bitebebene in nur einem einzelnen Pass verarbeiten (Single-Pass-Modus) und (2) einen echten Rohcodierungsmodus einführen, der sample-weise parallelisierbar ist und keine aufwendige Kontextmodellierung erfordert. Als nächstes wird ein alternativer Entropiekodierer aus der Literatur, der Bitplane Coder with Parallel Coefficient Processing (BPC-PaCo), evaluiert. Er gibt Signaladaptivität zu Gunsten von höherer Parallelität auf und daher wird hier untersucht und gezeigt, dass ein aus verschiedensten Testsequenzen gemitteltes statisches Wahrscheinlichkeitsmodell eine kompetitive Kompressionseffizienz erreicht. Es wird zudem eine Kombination von BPC-PaCo mit dem Single-Pass-Modus vorgeschlagen, der den Speedup gegenüber dem JPEG 2000 Entropiekodierer von 2,15x (BPC-PaCo mit zwei Pässen) auf 2,6x (BPC-PaCo mit Single-Pass-Modus) erhöht auf Kosten eines um 0,3 dB auf 1,0 dB erhöhten Spitzen-Signal-Rausch-Verhältnis (PSNR). Weiter wird ein paralleler Algorithmus zur Post-Compression Ratenkontrolle vorgestellt sowie eine parallele Codestream-Erstellung auf der GPU. Es wird weiterhin ein theoretisches Laufzeitmodell formuliert, das es durch Benchmarking von einer GPU ermöglicht die Laufzeit einer Routine auf einer anderen GPU vorherzusagen. Schließlich wird der erste JPEG XS GPU Decoder vorgestellt und evaluiert. JPEG XS wurde als Low Complexity Codec konzipiert und forderte erstmals explizit GPU-Freundlichkeit bereits im Call for Proposals. Ab Bitraten über 1 bpp ist der Decoder etwa 2x schneller im Vergleich zu JPEG 2000 und 1,5x schneller als der schnellste hier vorgestellte Entropiekodierer (BPC-PaCo mit Single-Pass-Modus). Mit einer GeForce GTX 1080 wird ein Decoder Durchsatz von rund 200 fps für eine UHD-4:4:4-Sequenz erreicht.This work investigates possibilities to create a high throughput, GPU-friendly, intra-only, Wavelet-based video compression algorithm optimized for visually lossless applications. Addressing the key observation that JPEG 2000’s entropy coder is a bottleneck and might be overly complex for a high bit rate scenario, various algorithmic alterations are proposed. First, JPEG 2000’s Selective Arithmetic Coding mode is realized on the GPU, but the gains in terms of an increased throughput are shown to be limited. Instead, two independent alterations not compliant to the standard are proposed, that (1) give up the concept of intra-bit plane truncation points and (2) introduce a true raw-coding mode that is fully parallelizable and does not require any context modeling. Next, an alternative block coder from the literature, the Bitplane Coder with Parallel Coefficient Processing (BPC-PaCo), is evaluated. Since it trades signal adaptiveness for increased parallelism, it is shown here how a stationary probability model averaged from a set of test sequences yields competitive compression efficiency. A combination of BPC-PaCo with the single-pass mode is proposed and shown to increase the speedup with respect to the original JPEG 2000 entropy coder from 2.15x (BPC-PaCo with two passes) to 2.6x (proposed BPC-PaCo with single-pass mode) at the marginal cost of increasing the PSNR penalty by 0.3 dB to at most 1 dB. Furthermore, a parallel algorithm is presented that determines the optimal code block bit stream truncation points (given an available bit rate budget) and builds the entire code stream on the GPU, reducing the amount of data that has to be transferred back into host memory to a minimum. A theoretical runtime model is formulated that allows, based on benchmarking results on one GPU, to predict the runtime of a kernel on another GPU. Lastly, the first ever JPEG XS GPU-decoder realization is presented. JPEG XS was designed to be a low complexity codec and for the first time explicitly demanded GPU-friendliness already in the call for proposals. Starting at bit rates above 1 bpp, the decoder is around 2x faster compared to the original JPEG 2000 and 1.5x faster compared to JPEG 2000 with the fastest evaluated entropy coder (BPC-PaCo with single-pass mode). With a GeForce GTX 1080, a decoding throughput of around 200 fps is achieved for a UHD 4:4:4 sequence

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others
    • …
    corecore