4,669 research outputs found

    A High Input Impedance Low Noise Integrated Front-End Amplifier for Neural Monitoring

    Get PDF

    Design Considerations of a Sub-50 {\mu}W Receiver Front-end for Implantable Devices in MedRadio Band

    Full text link
    Emerging health-monitor applications, such as information transmission through multi-channel neural implants, image and video communication from inside the body etc., calls for ultra-low active power (<50μ{\mu}W) high data-rate, energy-scalable, highly energy-efficient (pJ/bit) radios. Previous literature has strongly focused on low average power duty-cycled radios or low power but low-date radios. In this paper, we investigate power performance trade-off of each front-end component in a conventional radio including active matching, down-conversion and RF/IF amplification and prioritize them based on highest performance/energy metric. The analysis reveals 50Ω{\Omega} active matching and RF gain is prohibitive for 50μ{\mu}W power-budget. A mixer-first architecture with an N-path mixer and a self-biased inverter based baseband LNA, designed in TSMC 65nm technology show that sub 50μ{\mu}W performance can be achieved up to 10Mbps (< 5pJ/b) with OOK modulation.Comment: Accepted to appear on International Conference on VLSI Design 2018 (VLSID

    An analog integrated front-end amplifier for neural applications

    Get PDF

    Amplifiers in Biomedical Engineering: A Review from Application Perspectives

    Get PDF
    Continuous monitoring and treatment of various diseases with biomedical technologies and wearable electronics has become significantly important. The healthcare area is an important, evolving field that, among other things, requires electronic and micro-electromechanical technologies. Designed circuits and smart devices can lead to reduced hospitalization time and hospitals equipped with high-quality equipment. Some of these devices can also be implanted inside the body. Recently, various implanted electronic devices for monitoring and diagnosing diseases have been presented. These instruments require communication links through wireless technologies. In the transmitters of these devices, power amplifiers are the most important components and their performance plays important roles. This paper is devoted to collecting and providing a comprehensive review on the various designed implanted amplifiers for advanced biomedical applications. The reported amplifiers vary with respect to the class/type of amplifier, implemented CMOS technology, frequency band, output power, and the overall efficiency of the designs. The purpose of the authors is to provide a general view of the available solutions, and any researcher can obtain suitable circuit designs that can be selected for their problem by reading this survey

    A back-gate current neutralisation feedback loop for high input impedance neural front-end amplifiers

    Get PDF

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    Noise Efficient Integrated Amplifier Designs for Biomedical Applications

    Get PDF
    The recording of neural signals with small monolithically integrated amplifiers is of high interest in research as well as in commercial applications, where it is common to acquire 100 or more channels in parallel. This paper reviews the recent developments in low-noise biomedical amplifier design based on CMOS technology, including lateral bipolar devices. Seven major circuit topology categories are identified and analyzed on a per-channel basis in terms of their noise-efficiency factor (NEF), input-referred absolute noise, current consumption, and area. A historical trend towards lower NEF is observed whilst absolute noise power and current consumption exhibit a widespread over more than five orders of magnitude. The performance of lateral bipolar transistors as amplifier input devices is examined by transistor-level simulations and measurements from five different prototype designs fabricated in 180 nm and 350 nm CMOS technology. The lowest measured noise floor is 9.9 nV/√Hz with a 10 µA bias current, which results in a NEF of 1.2

    Low Power Circuits for Smart Flexible ECG Sensors

    Get PDF
    Cardiovascular diseases (CVDs) are the world leading cause of death. In-home heart condition monitoring effectively reduced the CVD patient hospitalization rate. Flexible electrocardiogram (ECG) sensor provides an affordable, convenient and comfortable in-home monitoring solution. The three critical building blocks of the ECG sensor i.e., analog frontend (AFE), QRS detector, and cardiac arrhythmia classifier (CAC), are studied in this research. A fully differential difference amplifier (FDDA) based AFE that employs DC-coupled input stage increases the input impedance and improves CMRR. A parasitic capacitor reuse technique is proposed to improve the noise/area efficiency and CMRR. An on-body DC bias scheme is introduced to deal with the input DC offset. Implemented in 0.35m CMOS process with an area of 0.405mm2, the proposed AFE consumes 0.9W at 1.8V and shows excellent noise effective factor of 2.55, and CMRR of 76dB. Experiment shows the proposed AFE not only picks up clean ECG signal with electrodes placed as close as 2cm under both resting and walking conditions, but also obtains the distinct -wave after eye blink from EEG recording. A personalized QRS detection algorithm is proposed to achieve an average positive prediction rate of 99.39% and sensitivity rate of 99.21%. The user-specific template avoids the complicate models and parameters used in existing algorithms while covers most situations for practical applications. The detection is based on the comparison of the correlation coefficient of the user-specific template with the ECG segment under detection. The proposed one-target clustering reduced the required loops. A continuous-in-time discrete-in-amplitude (CTDA) artificial neural network (ANN) based CAC is proposed for the smart ECG sensor. The proposed CAC achieves over 98% classification accuracy for 4 types of beats defined by AAMI (Association for the Advancement of Medical Instrumentation). The CTDA scheme significantly reduces the input sample numbers and simplifies the sample representation to one bit. Thus, the number of arithmetic operations and the ANN structure are greatly simplified. The proposed CAC is verified by FPGA and implemented in 0.18m CMOS process. Simulation results show it can operate at clock frequencies from 10KHz to 50MHz. Average power for the patient with 75bpm heart rate is 13.34W

    Development and modelling of a versatile active micro-electrode array for high density in-vivo and in-vitro neural signal investigation

    Get PDF
    The electrophysiological observation of neurological cells has allowed much knowledge to be gathered regarding how living organisms are believed to acquire and process sensation. Although much has been learned about neurons in isolation, there is much more to be discovered in how these neurons communicate within large networks. The challenges of measuring neurological networks at the scale, density and chronic level of non invasiveness required to observe neurological processing and decision making are manifold, however methods have been suggested that have allowed small scale networks to be observed using arrays of micro-fabricated electrodes. These arrays transduce ionic perturbations local to the cell membrane in the extracellular fluid into small electrical signals within the metal that may be measured. A device was designed for optimal electrical matching to the electrode interface and maximal signal preservation of the received extracellular neural signals. Design parameters were developed from electrophysiological computer simulations and experimentally obtained empirical models of the electrode-electrolyte interface. From this information, a novel interface based signal filtering method was developed that enabled high density amplifier interface circuitry to be realised. A novel prototype monolithic active electrode was developed using CMOS microfabrication technology. The device uses the top metallization of a selected process to form the electrode substrate and compact amplification circuitry fabricated directly beneath the electrode to amplify and separate the neural signal from the baseline offsets and noise of the electrode interface. The signal is then buffered for high speed sampling and switched signal routing. Prototype 16 and 256 active electrode array with custom support circuitry is presented at the layout stage for a 20 μm diameter 100 μm pitch electrode array. Each device consumes 26.4 μW of power and contributes 4.509 μV (rms) of noise to the received signal over a controlled bandwidth of 10 Hz - 5 kHz. The research has provided a fundamental insight into the challenges of high density neural network observation, both in the passive and the active manner. The thesis concludes that power consumption is the fundamental limiting factor of high density integrated MEA circuitry; low power dissipation being crucial for the existence of the surface adhered cells under measurement. With transistor sizing, noise and signal slewing each being inversely proportional to the dc supply current and the large power requirements of desirable ancillary circuitry such as analogue-to-digital converters, a situation of compromise is approached that must be carefully considered for specific application design

    Advances in Integrated Circuits and Systems for Wearable Biomedical Electrical Impedance Tomography

    Get PDF
    Electrical impedance tomography (EIT) is an impedance mapping technique that can be used to image the inner impedance distribution of the subject under test. It is non-invasive, inexpensive and radiation-free, while at the same time it can facilitate long-term and real-time dynamic monitoring. Thus, EIT lends itself particularly well to the development of a bio-signal monitoring/imaging system in the form of wearable technology. This work focuses on EIT system hardware advancement using complementary metal oxide semiconductor (CMOS) technology. It presents the design and testing of application specific integrated circuit (ASIC) and their successful use in two bio-medical applications, namely, neonatal lung function monitoring and human-machine interface (HMI) for prosthetic hand control. Each year fifteen million babies are born prematurely, and up to 30% suffer from lung disease. Although respiratory support, especially mechanical ventilation, can improve their survival, it also can cause injury to their vulnerable lungs resulting in severe and chronic pulmonary morbidity lasting into adulthood, thus an integrated wearable EIT system for neonatal lung function monitoring is urgently needed. In this work, two wearable belt systems are presented. The first belt features a miniaturized active electrode module built around an analog front-end ASIC which is fabricated with 0.35-µm high-voltage process technology with ±9 V power supplies and occupies a total die area of 3.9 mm². The ASIC offers a high power active current driver capable of up to 6 mAp-p output, and wideband active buffer for EIT recording as well as contact impedance monitoring. The belt has a bandwidth of 500 kHz, and an image frame rate of 107 frame/s. To further improve the system, the active electrode module is integrated into one ASIC. It contains a fully differential current driver, a current feedback instrumentation amplifier (IA), a digital controller and multiplexors with a total die area of 9.6 mm². Compared to the conventional active electrode architecture employed in the first EIT belt, the second belt features a new architecture. It allows programmable flexible electrode current drive and voltage sense patterns under simple digital control. It has intimate connections to the electrodes for the current drive and to the IA for direct differential voltage measurement providing superior common-mode rejection ratio (CMRR) up to 74 dB, and with active gain, the noise level can be reduced by a factor of √3 using the adjacent scan. The second belt has a wider operating bandwidth of 1 MHz and multi-frequency operation. The image frame rate is 122 frame/s, the fastest wearable EIT reported to date. It measures impedance with 98% accuracy and has less than 0.5 Ω and 1° variation across all channels. In addition the ASIC facilitates several other functionalities to provide supplementary clinical information at the bedside. With the advancement of technology and the ever-increasing fusion of computer and machine into daily life, a seamless HMI system that can recognize hand gestures and motions and allow the control of robotic machines or prostheses to perform dexterous tasks, is a target of research. Originally developed as an imaging technique, EIT can be used with a machine learning technique to track bones and muscles movement towards understanding the human user’s intentions and ultimately controlling prosthetic hand applications. For this application, an analog front-end ASIC is designed using 0.35-µm standard process technology with ±1.65 V power supplies. It comprises a current driver capable of differential drive and a low noise (9μVrms) IA with a CMRR of 80 dB. The function modules occupy an area of 0.07 mm². Using the ASIC, a complete HMI system based on the EIT principle for hand prosthesis control has been presented, and the user’s forearm inner bio-impedance redistribution is assessed. Using artificial neural networks, bio-impedance redistribution can be learned so as to recognise the user’s intention in real-time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation. Experiments with five subjects show that the system can achieve an overall recognition accuracy of 95.8%
    • …
    corecore