178 research outputs found

    Analyzing the Improvements of Energy Management Systems for Hybrid Electric Vehicles Using a Systematic Literature Review: How Far Are These Controls from Rule-Based Controls Used in Commercial Vehicles?

    Get PDF
    Featured Application This work is useful for researchers interested in the study of energy management systems for hybrid electric vehicles. In addition, it is interesting for institutions related to the market of this type of vehicle. The hybridization of vehicles is a viable step toward overcoming the challenge of the reduction of emissions related to road transport all over the world. To take advantage of the emission reduction potential of hybrid electric vehicles (HEVs), the appropriate design of their energy management systems (EMSs) to control the power flow between the engine and the battery is essential. This work presents a systematic literature review (SLR) of the more recent works that developed EMSs for HEVs. The review is carried out subject to the following idea: although the development of novel EMSs that seek the optimum performance of HEVs is booming, in the real world, HEVs continue to rely on well-known rule-based (RB) strategies. The contribution of this work is to present a quantitative comparison of the works selected. Since several studies do not provide results of their models against commercial RB strategies, it is proposed, as another contribution, to complete their results using simulations. From these results, it is concluded that the improvement of the analyzed EMSs ranges roughly between 5% and 10% with regard to commercial RB EMSs; in comparison to the optimum, the analyzed EMSs are nearer to the optimum than commercial RB EMSs

    Smart procurement of naturally generated energy (SPONGE) for PHEVs

    Get PDF
    In this paper, we propose a new engine management system for hybrid vehicles to enable energy providers and car manufacturers to provide new services. Energy forecasts are used to collaboratively orchestrate the behaviour of engine management systems of a fleet of plug-in hybrid electric vehicle (PHEVs) to absorb oncoming energy in a smart manner. Cooperative algorithms are suggested to manage the energy absorption in an optimal manner for a fleet of vehicles, and the mobility simulator SUMO (Simulation of Urban MObility) is used to demonstrate the efficacy of the proposed idea

    Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective

    Get PDF
    Plug-in hybrid electric vehicles (PHEVs) offer an immediate solution for emissions reduction and fuel displacement within the current infrastructure. Targeting PHEV powertrain optimization, a plethora of energy management strategies (EMSs) have been proposed. Although these algorithms present various levels of complexity and accuracy, they find a limitation in terms of availability of future trip information, which generally prevents exploitation of the full PHEV potential in real-life cycles. This paper presents a comprehensive analysis of EMS evolution toward blended mode (BM) and optimal control, providing a thorough survey of the latest progress in optimization-based algorithms. This is performed in the context of connected vehicles and highlights certain contributions that intelligent transportation systems (ITSs), traffic information, and cloud computing can provide to enhance PHEV energy management. The study is culminated with an analysis of future trends in terms of optimization algorithm development, optimization criteria, PHEV integration in the smart grid, and vehicles as part of the fleet

    A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification

    Get PDF
    The growth of environmental awareness and more robust enforcement of numerous regulations to reduce greenhouse gas (GHG) emissions have directed efforts towards addressing current environmental challenges. Considering the Vehicle Routing Problem (VRP), one of the effective strategies to control greenhouse gas emissions is to convert the fossil fuel-powered fleet into Environmentally Friendly Vehicles (EFVs). Given the multitude of constraints and assumptions defined for different types of VRPs, as well as assumptions and operational constraints specific to each type of EFV, many variants of environmentally friendly VRPs (EF-VRP) have been introduced. In this paper, studies conducted on the subject of EF-VRP are reviewed, considering all the road transport EFV types and problem variants, and classifying and discussing with a single holistic vision. The aim of this paper is twofold. First, it determines a classification of EF-VRP studies based on different types of EFVs, i.e., Alternative-Fuel Vehicles (AFVs), Electric Vehicles (EVs) and Hybrid Vehicles (HVs). Second, it presents a comprehensive survey by considering each variant of the classification, technical constraints and solution methods arising in the literature. The results of this paper show that studies on EF-VRP are relatively novel and there is still room for large improvements in several areas. So, to determine future insights, for each classification of EF-VRP studies, the paper provides the literature gaps and future research needs

    Modeling and Controlling a Hybrid Multi-Agent based Microgrid in Presence of Different Physical and Cyber Components

    Get PDF
    This dissertation starts with modeling of two different and important parts of the distribution power systems, i.e. distribution line and photovoltaic (PV) systems. Firstly, it studies different approximation methods and develops a new approach for simplification of Carson\u27s equations to model distribution lines for unbalanced power flow and short circuit analysis. The results of applying the proposed method on a three-phase unbalanced distribution system are compared with different existing methods as well as actual impedance values obtained from numerical integration method. Then steady state modeling and optimal placing of multiple PV system are investigated in order to reduce the total loss in the system. The results show the effectiveness of the proposed method in minimizing the total loss in a distribution power system.;The dissertation starts the discussion about microgrid modeling and control by implementing a novel frequency control approach in a microgrid. This study has been carried out step by step by modeling different part of the power system and proposing different algorithms. Firstly, the application of Renewable Energy Sources (RES) accompanied with Energy Storage Systems (ESS) in a hybrid system is studied in the presence of Distributed Generation (DG) resources in Load Frequency Control (LFC) problem of microgrid power system with significant penetration of wind speed disturbances. The next step is to investigate the effect of PHEVs in modelling and controlling the microgid. Therefore, system with different penetrations of PHEVs and different stochastic behaviors of PHEVs is modeled. Different kinds of control approaches, including PI control as conventional method and proposed optimal LQR and dynamic programming methods, have been utilized and the results have been compared with each other. Then, Multi Agent System (MAS) is utilized as a control solution which contributes the cyber aspects of microgrid system. The modeled microgrid along with dynamic models of different components is implemented in a centralized multi-agent based structure. The robustness of the proposed controller has been tested against different frequency changes including cyber attack implications with different timing and severity. New attack detection through learning method is also proposed and tested. The results show improvement in frequency response of the microgrid system using the proposed control method and defense strategy against cyber attacks.;Finally, a new multi-agent based control method along with an advanced secondary voltage and frequency control using Particle Swarm Optimization (PSO) and Adaptive Dynamic Programming (ADP) is proposed and tested in the modeled microgrid considering nonlinear heterogeneous dynamic models of DGs. The results are shown and compared with conventional control approaches and different multi-agent structures. It is observed that the results are improved by using the new multi-agent structure and secondary control method.;In summary, contributions of this dissertation center in three main topics. Firstly, new accurate methods for modeling the distribution line impedance and PV system is developed. Then advanced control and defense strategy method for frequency regulation against cyber intrusions and load changes in a microgrid is proposed. Finally, a new hierarchical multi-agent based control algorithm is designed for secondary voltage and frequency control of the microgrid. (Abstract shortened by ProQuest.)
    • …
    corecore