593 research outputs found

    High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays

    Get PDF
    A limiting factor in the development of mid-infrared optics is the lack of abundant materials that are transparent, low cost, lightweight, and easy to machine. In this paper, we demonstrate a metasurface device that circumvents these limitations. A flat lens based on antenna reflectarrays was designed to achieve near diffraction-limited focusing with a high efficiency (experiment: 80%, simulation: 83%) at 45(o) incidence angle at {\lambda} = 4.6 {\mu}m. This geometry considerably simplifies the experimental arrangement compared to the common geometry of normal incidence which requires beam splitters. Simulations show that the effect of comatic aberrations is small compared to parabolic mirrors. The use of single-step photolithography allows large scale fabrication.Comment: 9 page

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure

    Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities

    Full text link
    Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.Comment: to appear in the IEEE Transactions on Cognitive Communications and Networking (TCCN

    Gradient metasurfaces: a review of fundamentals and applications

    Full text link
    In the wake of intense research on metamaterials the two-dimensional analogue, known as metasurfaces, has attracted progressively increasing attention in recent years due to the ease of fabrication and smaller insertion losses, while enabling an unprecedented control over spatial distributions of transmitted and reflected optical fields. Metasurfaces represent optically thin planar arrays of resonant subwavelength elements that can be arranged in a strictly or quasi periodic fashion, or even in an aperiodic manner, depending on targeted optical wavefronts to be molded with their help. This paper reviews a broad subclass of metasurfaces, viz. gradient metasurfaces, which are devised to exhibit spatially varying optical responses resulting in spatially varying amplitudes, phases and polarizations of scattered fields. Starting with introducing the concept of gradient metasurfaces, we present classification of different metasurfaces from the viewpoint of their responses, differentiating electrical-dipole, geometric, reflective and Huygens' metasurfaces. The fundamental building blocks essential for the realization of metasurfaces are then discussed in order to elucidate the underlying physics of various physical realizations of both plasmonic and purely dielectric metasurfaces. We then overview the main applications of gradient metasurfaces, including waveplates, flat lenses, spiral phase plates, broadband absorbers, color printing, holograms, polarimeters and surface wave couplers. The review is terminated with a short section on recently developed nonlinear metasurfaces, followed by the outlook presenting our view on possible future developments and perspectives for future applications.Comment: Accepted for publication in Reports on Progress in Physic

    A Low-Profile Beam-Steering Reflectarray with Integrated Leaky-Wave Feed and 2-Bit Phase Resolution for Ka-band SatCom

    Get PDF
    © 2021 IEEE - All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TAP.2021.3111172A novel reflect array (RA) with ultra-low-profile and 2-bit phase quantization beam-steering ability is presented in this paper. To reduce the profile, a Leaky-wave feed is used to excite the RA with enhanced illumination efficiency. Moreover, simultaneous sum and difference patterns are also obtained to provide beam flexibility. The entire thickness of the proposed RA is less than 3% of that of the conventional front-fed RA with the same aperture. To increase the efficiency of the RA, a novel unit cell consisting of a polarizer layer and a reflection layer is developed, which is configured to provide polarization rotation and 2-bit phase shifts by using a hybrid of tunable polarization and discrete resonator. The operation principle, theoretical explanation, and implementation of the proposed antenna are elaborated in this work. To prove the design concept and beam scanning performance, an array with 9×7 unit cells operating atKa-band is designed and simulated firstly. 2-D beam scanning within the range of ±30º has been verified. Then, a passive prototype with 9×67 unit cells is designed, fabricated and measured. Experimental results show aperture efficiency of35.1% and illumination efficiency of 43.4%. The developed RA is scalable, and it provides a viable low-cost solution to develop low-profile, high-gain and beam-steering array antennas for satellite applicationsPeer reviewe

    Broadband Approaches And Beam-Scanning Techniques For Reflectarray Antenna

    Get PDF
    Reflectarray antennas combine the numerous advantages of reflector antennas and phased array antennas and create a hybrid high-gain antenna with a low-profile, low-mass, easy-fabrication, and diversified radiation performance. However, it still has some inherent drawbacks, such as limited bandwidth and scanning range, which are targeted in this dissertation. At first, the array theory approach for radiation analysis of reflectarray antennas is described and implemented. Numerical results are then presented and compared with reference results to confirm its reliability. As the most critical influential factor to the reflectarray bandwidth, the element bandwidth was studied at first, and the effects of element shape and substrate thickness were investigated. Then, a comprehensive study was performed to investigate the bandwidth performance of reflectarrays on the system level. The effect of aperture size, element bandwidth and phase synthesis method was discussed in sequence. Particularly, a novel phase synthesis approach was proposed, which enables reflectarray to achieve a significant bandwidth improvement even with elements of narrow bandwidth. Prototypes are fabricated and tested to validate the idea. Since the reflectarray antenna is a hybrid product of reflector and phased array antennas, its main beam could be steered by either rotating its feed or reconfiguring its element phases. The former way was explored at first. An improved phase design was proposed for reflectarrays mimicing parabolic-cylindrical reflectors to expand its scanning range. The published achievements of reconfigurable reflectarrays design are revieand it is found that currently efficiency is a big problem. A 1-bit 10ã—10 reconfigurable reflectarray using pin diode was designed, fabricated and measured to explore the energy loss, and experimental results shothat 14% efficiency could be reached. In summary, some improved designs regarding bandwidth and scanning performance for reflectarrays are proposed in this dissertation. Various factors affecting reflectarray bandwidth are investigated, which shall provide some guidelines regarding bandwidth improvement. On the other hand, two designs are presented to explore the beam scanning characteristic of reflectarray antenna, by mechanical and electrical ways respectively. Several prototypes have been fabricated and measured, demonstrating the novel features and potential applications of reflectarray antennas

    Hybrid Maritime Satellite Communication Antenna

    Get PDF

    Beam-Steerable and Reconfigurable Reflectarray Antennas for High Gain Space Applications

    Get PDF
    Reflectarray antennas uniquely combine the advantages of parabolic reflectors and phased array antennas. Comprised of planar structures similar to phased arrays and utilizing quasi-optical excitation similar to parabolic reflectors, reflectarray antennas provide beam steering without the need of complex and lossy feed networks. Chapter 1 discusses the basic theory of reflectarray and its design. A brief summary of previous work and current research status is also presented. The inherent advantages and drawbacks of the reflectarray are discussed. In chapter 2, a novel theoretical approach to extract the reflection coefficient of reflectarray unit cells is developed. The approach is applied to single-resonance unit cell elements under normal and waveguide incidences. The developed theory is also utilized to understand the difference between the TEM and TE10 mode of excitation. Using this theory, effects of different physical parameters on reflection properties of unit cells are studied without the need of full-wave simulations. Detailed analysis is performed for Ka-band reflectarray unit cells and verified by full-wave simulations. In addition, an approach to extract the Q factors using full-wave simulations is also presented. Lastly, a detailed study on the effects of inter-element spacing is discussed. Q factor theory discussed in chapter 2 is extended to account for the varying incidence angles and polarizations in chapter 3 utilizing Floquet modes. Emphasis is laid on elements located on planes where extremities in performance tend to occur. The antenna element properties are assessed in terms of maximum reflection loss and slope of the reflection phase. A thorough analysis is performed at Ka band and the results obtained are verified using full-wave simulations. Reflection coefficients over a 749-element reflectarray aperture for a broadside radiation pattern are presented for a couple of cases and the effects of coupling conditions in conjunction with incidence angles are demonstrated. The presented theory provides explicit physical intuition and guidelines for efficient and accurate reflectarray design. In chapter 4, tunable reflectarray elements capacitively loaded with Barium Strontium Titanate (BST) thin film are shown. The effects of substrate thickness, operating frequency and deposition pressure are shown utilizing coupling conditions and the performance is optimized. To ensure minimum affects from biasing, optimized biasing schemes are discussed. The proposed unit cells are fabricated and measured, demonstrating the reconfigurability by varying the applied E-field. To demonstrate the concept, a 45 element array is also designed and fabricated. Using anechoic chamber measurements, far-field patterns are obtained and a beam scan up to 25o is shown on the E-plane. Overall, novel theoretical approaches to analyze the reflection properties of the reflectarray elements using Q factors are developed. The proposed theoretical models provide valuable physical insight utilizing coupling conditions and aid in efficient reflectarray design. In addition, for the first time a continuously tunable reflectarray operating at Ka-band is presented using BST technology. Due to monolithic integration, the technique can be extended to higher frequencies such as V-band and above
    • …
    corecore