1,226 research outputs found

    A high capacity multihop packet CDMA wireless network

    Full text link

    IST-2000-30148 I-METRA: D6.2 Implications in re-configurable systems beyond 3G (Part 2)

    Get PDF
    This activity evaluates the extension of the bandwidth of the UTRA MIMO HSDPA concept to 20 MHz, which is precisely the bandwidth of HIPERLAN/2. This would allow a fair comparison between the performance of UTRA MIMO HSDPA and the enhanced HIPERLAN/2. The bandwidth expansion would be the consequence of multiplying the chip rate of the W-CDMA spreading by four, i.e., 3.84 x 4 = 15.36 Mcps. A higher bandwidth MIMO channel model is necessary and this will be developed based on the channel model already developed in WP2. High data rates are required to satisfy the ever-increasing application requirements in future wireless communication systems. Recent investigations have indicated that a peak data rate of up to 20Mbps per user in the DL may be required for satisfactory reception of bursty traffic. As the transmission powers (of both mobile terminals and base stations) are limited, higher data rates lead to the reduction of the effective coverage area of a cell. That is, only users that are close to the base station will be able to communicate with high data rates, while users far away from the base station will only be able to use low data rates.Preprin

    QoS constrained cellular ad hoc augmented networks

    Get PDF
    In this dissertation, based on different design criteria, three novel quality of service (QoS) constrained cellular ad hoc augmented network (CAHAN) architectures are proposed for next generation wireless networks. The CAHAN architectures have a hybrid architecture, in which each MT of CDMA cellular networks has ad hoc communication capability. The CAHAN architectures are an evolutionary approach to conventional cellular networks. The proposed architectures have good system scalability and high system reliability. The first proposed architecture is the QoS constrained minimum-power cellular ad hoc augmented network architecture (QCMP CAHAN). The QCMP CAHAN can find the optimal minimum-power routes under the QoS constraints (bandwidth, packet-delay, or packet-error-rate constraint). The total energy consumed by the MTs is lower in the case of QCMP CAHAN than in the case of pure cellular networks. As the ad hoc communication range of each MT increases, the total transmitted power in QCMP CAHAN decreases. However, due to the increased number of hops involved in information delivery between the source and the destination, the end-to-end delay increases. The maximum end-to-end delay will be limited to a specified tolerable value for different services. An MT in QCMP CAHAN will not relay any messages when its ad hoc communication range is zero, and if this is the case for all MTs, then QCMP CAHAN reduces to the traditional cellular network. A QoS constrained network lifetime extension cellular ad hoc augmented network architecture (QCLE CAHAN) is proposed to achieve the maximum network lifetime under the QoS constraints. The network lifetime is higher in the case of QCLE CAHAN than in the case of pure cellular networks or QCMP CAHAN. In QCLE CAHAN, a novel QoS-constrained network lifetime extension routing algorithm will dynamically select suitable ad-hoc-switch-to-cellular points (ASCPs) according to the MT remaining battery energy such that the selection will balance all the MT battery energy and maximizes the network lifetime. As the number of ASCPs in an ad hoc subnet decreases, the network lifetime will be extended. Maximum network lifetime can be increased until the end-to-end QoS in QCLE CAHAN reaches its maximum tolerable value. Geocasting is the mechanism to multicast messages to the MTs whose locations lie within a given geographic area (target area). Geolocation-aware CAHAN (GA CAHAN) architecture is proposed to improve total transmitted power expended for geocast services in cellular networks. By using GA CAHAN for geocasting, saving in total transmitted energy can be achieved as compared to the case of pure cellular networks. When the size of geocast target area is large, GA CAHAN can save larger transmitted energy

    Hop-limited routing for multihop cellular networks

    Get PDF
    In recent years, conventional cellular systems have experienced evolution in fields of data oriented services. During this period, the requirement for high data-rate stimulated new research proposals, which resulted in a new architecture: Multihop Cellular Networks (MCN), where multihop structure enables mobile stations to forward packets from other mobile stations to the base station on the uplink, and in turn, forward packets to other mobile stations from the base station on the downlink. In this thesis, a new routing algorithm is introduced for MCNs in order to limit the number of hops between the base station and the mobile stations with given delay constraints. The capacity of MCNs is restricted due to intensive traffic in the network since all nodes has the capability of sending packets simultaneously. The analysis of average end-to-end delay in high bitrate data transmission reveals that minimizing end-to-end delay with a proper scheduling scheme guarantees the aim of limiting number of hops in MCNs. The proposed algorithm showed that the intensive traffic can be absorbed by the base station by limiting the number of hops between the base station and the mobile stations

    CDMA-based MAC protocol for wireless ad hoc networks

    Get PDF

    Performance and energy efficiency in wireless self-organized networks

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore