4,059 research outputs found

    On the isomorphism problem of concept algebras

    Get PDF
    Weakly dicomplemented lattices are bounded lattices equipped with two unary operations to encode a negation on {\it concepts}. They have been introduced to capture the equational theory of concept algebras \cite{Wi00}. They generalize Boolean algebras. Concept algebras are concept lattices, thus complete lattices, with a weak negation and a weak opposition. A special case of the representation problem for weakly dicomplemented lattices, posed in \cite{Kw04}, is whether complete {\wdl}s are isomorphic to concept algebras. In this contribution we give a negative answer to this question (Theorem \ref{T:main}). We also provide a new proof of a well known result due to M.H. Stone \cite{St36}, saying that {\em each Boolean algebra is a field of sets} (Corollary \ref{C:Stone}). Before these, we prove that the boundedness condition on the initial definition of {\wdl}s (Definition \ref{D:wdl}) is superfluous (Theorem \ref{T:wcl}, see also \cite{Kw09}).Comment: 15 page

    Modal mu-calculi

    Get PDF

    Finite Distributive Concept Algebras

    Get PDF
    Concept algebras are concept lattices enriched by a weak negation and a weak opposition. In Ganter and Kwuida (Contrib. Gen. Algebra, 14:63-72, 2004) we gave a contextual description of the lattice of weak negations on a finite lattice. In this contribution1 we use this description to give a characterization of finite distributive concept algebra

    A Polynomial Translation of Logic Programs with Nested Expressions into Disjunctive Logic Programs: Preliminary Report

    Full text link
    Nested logic programs have recently been introduced in order to allow for arbitrarily nested formulas in the heads and the bodies of logic program rules under the answer sets semantics. Nested expressions can be formed using conjunction, disjunction, as well as the negation as failure operator in an unrestricted fashion. This provides a very flexible and compact framework for knowledge representation and reasoning. Previous results show that nested logic programs can be transformed into standard (unnested) disjunctive logic programs in an elementary way, applying the negation as failure operator to body literals only. This is of great practical relevance since it allows us to evaluate nested logic programs by means of off-the-shelf disjunctive logic programming systems, like DLV. However, it turns out that this straightforward transformation results in an exponential blow-up in the worst-case, despite the fact that complexity results indicate that there is a polynomial translation among both formalisms. In this paper, we take up this challenge and provide a polynomial translation of logic programs with nested expressions into disjunctive logic programs. Moreover, we show that this translation is modular and (strongly) faithful. We have implemented both the straightforward as well as our advanced transformation; the resulting compiler serves as a front-end to DLV and is publicly available on the Web.Comment: 10 pages; published in Proceedings of the 9th International Workshop on Non-Monotonic Reasonin

    The Fan Theorem, its strong negation, and the determinacy of games

    Full text link
    IIn the context of a weak formal theory called Basic Intuitionistic Mathematics BIM\mathsf{BIM}, we study Brouwer's Fan Theorem and a strong negation of the Fan Theorem, Kleene's Alternative (to the Fan Theorem). We prove that the Fan Theorem is equivalent to contrapositions of a number of intuitionistically accepted axioms of countable choice and that Kleene's Alternative is equivalent to strong negations of these statements. We also discuss finite and infinite games and introduce a constructively useful notion of determinacy. We prove that the Fan Theorem is equivalent to the Intuitionistic Determinacy Theorem, saying that every subset of Cantor space is, in our constructively meaningful sense, determinate, and show that Kleene's Alternative is equivalent to a strong negation of a special case of this theorem. We then consider a uniform intermediate value theorem and a compactness theorem for classical propositional logic, and prove that the Fan Theorem is equivalent to each of these theorems and that Kleene's Alternative is equivalent to strong negations of them. We end with a note on a possibly important statement, provable from principles accepted by Brouwer, that one might call a Strong Fan Theorem.Comment: arXiv admin note: text overlap with arXiv:1106.273

    Efficient Normalization of Linear Temporal Logic

    Full text link
    In the mid 80s, Lichtenstein, Pnueli, and Zuck proved a classical theorem stating that every formula of Past LTL (the extension of LTL with past operators) is equivalent to a formula of the form i=1nGFφiFGψi\bigwedge_{i=1}^n \mathbf{G}\mathbf{F}\, \varphi_i \vee \mathbf{F}\mathbf{G}\, \psi_i , where φi\varphi_i and ψi\psi_i contain only past operators. Some years later, Chang, Manna, and Pnueli built on this result to derive a similar normal form for LTL. Both normalization procedures have a non-elementary worst-case blow-up, and follow an involved path from formulas to counter-free automata to star-free regular expressions and back to formulas. We improve on both points. We present direct and purely syntactic normalization procedures for LTL, yielding a normal form very similar to the one by Chang, Manna, and Pnueli, that exhibit only a single exponential blow-up. As an application, we derive a simple algorithm to translate LTL into deterministic Rabin automata. The algorithm normalizes the formula, translates it into a special very weak alternating automaton, and applies a simple determinization procedure, valid only for these special automata.Comment: Submitted to J. ACM. arXiv admin note: text overlap with arXiv:2304.08872, arXiv:2005.0047

    Intuitionistic logic and its philosophy

    Get PDF
    corecore