371 research outputs found

    Complexity classifications for different equivalence and audit problems for Boolean circuits

    Get PDF
    We study Boolean circuits as a representation of Boolean functions and consider different equivalence, audit, and enumeration problems. For a number of restricted sets of gate types (bases) we obtain efficient algorithms, while for all other gate types we show these problems are at least NP-hard.Comment: 25 pages, 1 figur

    Complexity dichotomies for approximations of counting problems

    Get PDF
    Αυτή η διπλωματική αποτελεί μια επισκόπηση θεωρημάτων διχοτομίας για υπολογιστικά προβλήματα, και ειδικότερα προβλήματα μέτρησης. Θεώρημα διχοτομίας στην υπολογιστική πολυπλοκότητα είναι ένας πλήρης χαρασκτηρισμός των μελών μιας κλάσης προβλημάτων, σε υπολογιστικά δύσκολα και υπολογιστικά εύκολα, χωρίς να υπάρχουν προβλήματα ενδιάμεσης πολυπλοκότητας στην κλάση αυτή. Λόγω του θεωρήματος του Ladner, δεν μπορούμε να έχουμε διχοτομία για ολόκληρες τις κλάσεις NP και #P, παρόλα αυτά υπάρχουν μεγάλες υποκλάσεις της NP (#P) για τις οποίες ισχύουν θεωρήματα διχοτομίας. Συνεχίζουμε με την εκδοχή απόφασης του προβλήματος ικανοποίησης περιορισμών (CSP), μία κλάση προβλήμάτων της NP στην οποία δεν εφαρμόζεται το θεώρημα του Ladner. Δείχνουμε τα θεωρήματα διχοτομίας που υπάρχουν για ειδικές περιπτώσεις του CSP. Στη συνέχεια επικεντρωνόμαστε στα προβλήματα μέτρησης παρουσιάζοντας τα παρακάτω μοντέλα: Ομομορφισμοί γράφων, μετρητικό πρόβλημα ικανοποίησης περιορισμών (#CSP), και προβλήματα Holant. Αναφέρουμε τα θεωρήματα διχοτομίας που γνωρίζουμε γι' αυτά. Στο τελευταίο και κύριο κεφάλαιο, χαλαρώνουμε την απαίτηση ακριβών υπολογισμών, και αρκούμαστε στην προσέγγιση των προβλημάτων. Παρουσιάζουμε τα μέχρι σήμερα γνωστά θεωρήματα κατάταξης για το #CSP. Πολλά ερωτήματα στην περιοχή παραμένουν ανοιχτά. Το παράρτημα είναι μια εισαγωγή στους ολογραφικούς αλγορίθμους, μία πρόσφατη αλγοριθμική τεχνική για την εύρεση πολυωνυμικών αλγορίθμων (ακριβείς υπολογισμοί) σε προβλήματα μέτρησης.This thesis is a survey of dichotomy theorems for computational problems, focusing in counting problems. A dichotomy theorem in computational complexity, is a complete classification of the members of a class of problems, in computationally easy and computationally hard, with the set of problems of intermediate complexity being empty. Due to Ladner's theorem we cannot find a dichotomy theorem for the whole classes NP and #P, however there are large subclasses of NP (#P), that model many "natural" problems, for which dichotomy theorems exist. We continue with the decision version of constraint satisfaction problems (CSP), a class of problems in NP, for which Ladner's theorem doesn't apply. We obtain a dichotomy theorem for some special cases of CSP. We then focus on counting problems presenting the following frameworks: graph homomorphisms, counting constraint satisfaction (#CSP) and Holant problems; we provide the known dichotomies for these frameworks. In the last and main chapter of this thesis we relax the requirement of exact computation, and settle in approximating the problems. We present the known cassification theorems for cases of #CSP. Many questions in terms of approximate counting problems remain open. The appendix introduces a recent technique for obtaining exact polynomial-time algorithms for counting problems, namely the holographic algorithms

    05301 Abstracts Collection -- Exact Algorithms and Fixed-Parameter Tractability

    Get PDF
    From 24.07.05 to 29.07.05, the Dagstuhl Seminar 05301 ``Exact Algorithms and Fixed-Parameter Tractability\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. This is a collection of abstracts of the presentations given during the seminar

    A novel characterization of the complexity class based on counting and comparison

    Get PDF
    This is the author's accepted versionFinal version available from Elsevier via the DOI in this recordThe complexity class Θ2P, which is the class of languages recognizable by deterministic Turing machines in polynomial time with at most logarithmic many calls to an NP oracle, received extensive attention in the literature. Its complete problems can be characterized by different specific tasks, such as deciding whether the optimum solution of an NP problem is unique, or whether it is in some sense “odd” (e.g., whether its size is an odd number). In this paper, we introduce a new characterization of this class and its generalization ΘkP to the k-th level of the polynomial hierarchy. We show that problems in ΘkP are also those whose solution involves deciding, for two given sets A and B of instances of two Σk−1P-complete (or Πk−1P-complete) problems, whether the number of “yes”-instances in A is greater than those in B. Moreover, based on this new characterization, we provide a novel sufficient condition for ΘkP-hardness. We also define the general problem Comp-Validk, which is proven here Θk+1P-complete. Comp-Validk is the problem of deciding, given two sets A and B of quantified Boolean formulas with at most k alternating quantifiers, whether the number of valid formulas in A is greater than those in B. Notably, the problem Comp-Sat of deciding whether a set contains more satisfiable Boolean formulas than another set, which is a particular case of Comp-Valid1, demonstrates itself as a very intuitive Θ2P-complete problem. Nonetheless, to our knowledge, it eluded its formal definition to date. In fact, given its strict adherence to the count-and-compare semantics here introduced, Comp-Validk is among the most suitable tools to prove ΘkP-hardness of problems involving the counting and comparison of the number of “yes”-instances in two sets. We support this by showing that the Θ2P-hardness of the Max voting scheme over mCP-nets is easily obtained via the new characterization of ΘkP introduced in this paper.This work was supported by the UK EPSRC grants EP/J008346/1, EP/L012138/1, and EP/M025268/1, and by The Alan Turing Institute under the EPSRC grant EP/N510129/1. We thank Dominik Peters and the anonymous reviewers for their helpful comments on a preliminary version of the paper
    corecore