5 research outputs found

    On the intersection of tolerance and cocomparability graphs.

    Get PDF
    It has been conjectured by Golumbic and Monma in 1984 that the intersection of tolerance and cocomparability graphs coincides with bounded tolerance graphs. Since cocomparability graphs can be efficiently recognized, a positive answer to this conjecture in the general case would enable us to efficiently distinguish between tolerance and bounded tolerance graphs, although it is NP-complete to recognize each of these classes of graphs separately. The conjecture has been proved under some – rather strong – structural assumptions on the input graph; in particular, it has been proved for complements of trees, and later extended to complements of bipartite graphs, and these are the only known results so far. Furthermore, it is known that the intersection of tolerance and cocomparability graphs is contained in the class of trapezoid graphs. In this article we prove that the above conjecture is true for every graph G, whose tolerance representation satisfies a slight assumption; note here that this assumption concerns only the given tolerance representation R of G, rather than any structural property of G. This assumption on the representation is guaranteed by a wide variety of graph classes; for example, our results immediately imply the correctness of the conjecture for complements of triangle-free graphs (which also implies the above-mentioned correctness for complements of bipartite graphs). Our proofs are algorithmic, in the sense that, given a tolerance representation R of a graph G, we describe an algorithm to transform R into a bounded tolerance representation R  ∗  of G. Furthermore, we conjecture that any minimal tolerance graph G that is not a bounded tolerance graph, has a tolerance representation with exactly one unbounded vertex. Our results imply the non-trivial result that, in order to prove the conjecture of Golumbic and Monma, it suffices to prove our conjecture. In addition, there already exists evidence in the literature that our conjecture is true

    An Intersection Model for Multitolerance Graphs: Efficient Algorithms and Hierarchy

    Get PDF
    Tolerance graphs model interval relations in such a way that intervals can tolerate a certain degree of overlap without being in conflict. This class of graphs has attracted many research efforts, mainly due to its interesting structure and its numerous applications, especially in DNA sequence analysis and resource allocation, among others. In one of the most natural generalizations of tolerance graphs, namely multitolerance graphs, two tolerances are allowed for each interval—one from the left and one from the right side of the interval. Then, in its interior part, every interval tolerates the intersection with others by an amount that is a convex combination of its two border-tolerances. In the comparison of DNA sequences between different organisms, the natural interpretation of this model lies on the fact that, in some applications, we may want to treat several parts of the genomic sequences differently. That is, we may want to be more tolerant at some parts of the sequences than at others. These two tolerances for every interval—together with their convex hull—define an infinite number of the so called tolerance-intervals, which make the multitolerance model inconvenient to cope with. In this article we introduce the first non-trivial intersection model for multitolerance graphs, given by objects in the 3-dimensional space called trapezoepipeds. Apart from being important on its own, this new intersection model proves to be a powerful tool for designing efficient algorithms. Given a multitolerance graph with n vertices and m edges along with a multitolerance representation, we present algorithms that compute a minimum coloring and a maximum clique in optimal O(nlogn) time, and a maximum weight independent set in O(m+nlogn) time. Moreover, our results imply an optimal O(nlogn) time algorithm for the maximum weight independent set problem on tolerance graphs, thus closing the complexity gap for this problem. Additionally, by exploiting more the new 3D-intersection model, we completely classify multitolerance graphs in the hierarchy of perfect graphs. The resulting hierarchy of classes of perfect graphs is complete, i.e. all inclusions are strict

    On the intersection of tolerance and cocomparability graphs.

    Get PDF
    Tolerance graphs have been extensively studied since their introduction, due to their interesting structure and their numerous applications, as they generalize both interval and permutation graphs in a natural way. It has been conjectured by Golumbic, Monma, and Trotter in 1984 that the intersection of tolerance and cocomparability graphs coincides with bounded tolerance graphs. Since cocomparability graphs can be efficiently recognized, a positive answer to this conjecture in the general case would enable us to efficiently distinguish between tolerance and bounded tolerance graphs, although it is NP-complete to recognize each of these classes of graphs separately. This longstanding conjecture has been proved under some – rather strong – structural assumptions on the input graph; in particular, it has been proved for complements of trees, and later extended to complements of bipartite graphs, and these are the only known results so far. Furthermore, it is known that the intersection of tolerance and cocomparability graphs is contained in the class of trapezoid graphs. Our main result in this article is that the above conjecture is true for every graph G that admits a tolerance representation with exactly one unbounded vertex; note that this assumption concerns only the given tolerance representation R of G, rather than any structural property of G. Moreover, our results imply as a corollary that the conjecture of Golumbic, Monma, and Trotter is true for every graph G = (V,E) that has no three independent vertices a, b, c ∈ V such that N(a) ⊂ N(b) ⊂ N(c), where N(v) denotes the set of neighbors of a vertex v ∈ V ; this is satisfied in particular when G is the complement of a triangle-free graph (which also implies the above-mentioned correctness for complements of bipartite graphs). Our proofs are constructive, in the sense that, given a tolerance representation R of a graph G, we transform R into a bounded tolerance representation R of G. Furthermore, we conjecture that any minimal tolerance graph G that is not a bounded tolerance graph, has a tolerance representation with exactly one unbounded vertex. Our results imply the non-trivial result that, in order to prove the conjecture of Golumbic, Monma, and Trotter, it suffices to prove our conjecture

    Subject Index Volumes 1–200

    Get PDF
    corecore