150,119 research outputs found

    A Hierarchical Word Sequence Language Model

    Get PDF

    From Characters to Words: Hierarchical Pre-trained Language Model for Open-vocabulary Language Understanding

    Full text link
    Current state-of-the-art models for natural language understanding require a preprocessing step to convert raw text into discrete tokens. This process known as tokenization relies on a pre-built vocabulary of words or sub-word morphemes. This fixed vocabulary limits the model's robustness to spelling errors and its capacity to adapt to new domains. In this work, we introduce a novel open-vocabulary language model that adopts a hierarchical two-level approach: one at the word level and another at the sequence level. Concretely, we design an intra-word module that uses a shallow Transformer architecture to learn word representations from their characters, and a deep inter-word Transformer module that contextualizes each word representation by attending to the entire word sequence. Our model thus directly operates on character sequences with explicit awareness of word boundaries, but without biased sub-word or word-level vocabulary. Experiments on various downstream tasks show that our method outperforms strong baselines. We also demonstrate that our hierarchical model is robust to textual corruption and domain shift.Comment: Accepted to ACL 2023 Main Conferenc

    Investigating Linguistic Pattern Ordering in Hierarchical Natural Language Generation

    Full text link
    Natural language generation (NLG) is a critical component in spoken dialogue system, which can be divided into two phases: (1) sentence planning: deciding the overall sentence structure, (2) surface realization: determining specific word forms and flattening the sentence structure into a string. With the rise of deep learning, most modern NLG models are based on a sequence-to-sequence (seq2seq) model, which basically contains an encoder-decoder structure; these NLG models generate sentences from scratch by jointly optimizing sentence planning and surface realization. However, such simple encoder-decoder architecture usually fail to generate complex and long sentences, because the decoder has difficulty learning all grammar and diction knowledge well. This paper introduces an NLG model with a hierarchical attentional decoder, where the hierarchy focuses on leveraging linguistic knowledge in a specific order. The experiments show that the proposed method significantly outperforms the traditional seq2seq model with a smaller model size, and the design of the hierarchical attentional decoder can be applied to various NLG systems. Furthermore, different generation strategies based on linguistic patterns are investigated and analyzed in order to guide future NLG research work.Comment: accepted by the 7th IEEE Workshop on Spoken Language Technology (SLT 2018). arXiv admin note: text overlap with arXiv:1808.0274
    • …
    corecore