23,564 research outputs found

    Exploring Deep-Sea Data

    Get PDF
    The Monterey Bay Aquarium Research Institute (MBARI) has collected and archived deep-sea video from remotely operated vehicle dives since 1988. The video archive contains footage and data on the biological, chemical, geological, and physical aspects of deep regions of the Pacific. MBARI developed a software system, the Video Annotation and Reference System, to create, store, and retrieve video annotations. The system is based on a hierarchical catalog of biological, geological, and technical terms that allows consistent and rapid classification of objects seen on video. Based on knowledge collected by the annotation process, MBARI staff developed a web-based Deep-Sea Guide to the organisms and geologic features recorded on remotely operated vehicle dives into the deep sea. The searchable guide provides information about biological taxonomy, geology, and habitats, and displays dynamic histograms and useful statistics derived from the video annotations

    Highly efficient low-level feature extraction for video representation and retrieval.

    Get PDF
    PhDWitnessing the omnipresence of digital video media, the research community has raised the question of its meaningful use and management. Stored in immense multimedia databases, digital videos need to be retrieved and structured in an intelligent way, relying on the content and the rich semantics involved. Current Content Based Video Indexing and Retrieval systems face the problem of the semantic gap between the simplicity of the available visual features and the richness of user semantics. This work focuses on the issues of efficiency and scalability in video indexing and retrieval to facilitate a video representation model capable of semantic annotation. A highly efficient algorithm for temporal analysis and key-frame extraction is developed. It is based on the prediction information extracted directly from the compressed domain features and the robust scalable analysis in the temporal domain. Furthermore, a hierarchical quantisation of the colour features in the descriptor space is presented. Derived from the extracted set of low-level features, a video representation model that enables semantic annotation and contextual genre classification is designed. Results demonstrate the efficiency and robustness of the temporal analysis algorithm that runs in real time maintaining the high precision and recall of the detection task. Adaptive key-frame extraction and summarisation achieve a good overview of the visual content, while the colour quantisation algorithm efficiently creates hierarchical set of descriptors. Finally, the video representation model, supported by the genre classification algorithm, achieves excellent results in an automatic annotation system by linking the video clips with a limited lexicon of related keywords

    Context-aware person identification in personal photo collections

    Get PDF
    Identifying the people in photos is an important need for users of photo management systems. We present MediAssist, one such system which facilitates browsing, searching and semi-automatic annotation of personal photos, using analysis of both image content and the context in which the photo is captured. This semi-automatic annotation includes annotation of the identity of people in photos. In this paper, we focus on such person annotation, and propose person identification techniques based on a combination of context and content. We propose language modelling and nearest neighbor approaches to context-based person identification, in addition to novel face color and image color content-based features (used alongside face recognition and body patch features). We conduct a comprehensive empirical study of these techniques using the real private photo collections of a number of users, and show that combining context- and content-based analysis improves performance over content or context alone

    A Formal Framework for Linguistic Annotation

    Get PDF
    `Linguistic annotation' covers any descriptive or analytic notations applied to raw language data. The basic data may be in the form of time functions -- audio, video and/or physiological recordings -- or it may be textual. The added notations may include transcriptions of all sorts (from phonetic features to discourse structures), part-of-speech and sense tagging, syntactic analysis, `named entity' identification, co-reference annotation, and so on. While there are several ongoing efforts to provide formats and tools for such annotations and to publish annotated linguistic databases, the lack of widely accepted standards is becoming a critical problem. Proposed standards, to the extent they exist, have focussed on file formats. This paper focuses instead on the logical structure of linguistic annotations. We survey a wide variety of existing annotation formats and demonstrate a common conceptual core, the annotation graph. This provides a formal framework for constructing, maintaining and searching linguistic annotations, while remaining consistent with many alternative data structures and file formats.Comment: 49 page

    SAINE: Scientific Annotation and Inference Engine of Scientific Research

    Full text link
    We present SAINE, an Scientific Annotation and Inference ENgine based on a set of standard open-source software, such as Label Studio and MLflow. We show that our annotation engine can benefit the further development of a more accurate classification. Based on our previous work on hierarchical discipline classifications, we demonstrate its application using SAINE in understanding the space for scholarly publications. The user study of our annotation results shows that user input collected with the help of our system can help us better understand the classification process. We believe that our work will help to foster greater transparency and better understand scientific research. Our annotation and inference engine can further support the downstream meta-science projects. We welcome collaboration and feedback from the scientific community on these projects. The demonstration video can be accessed from https://youtu.be/yToO-G9YQK4. A live demo website is available at https://app.heartex.com/user/signup/?token=e2435a2f97449fa1 upon free registration.Comment: Under review in IJCNLP-AACL Demo 202

    Unsupervised decoding of long-term, naturalistic human neural recordings with automated video and audio annotations

    Get PDF
    Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Most ongoing efforts have focused on training decoders on specific, stereotyped tasks in laboratory settings. Implementing brain-computer interfaces (BCIs) in natural settings requires adaptive strategies and scalable algorithms that require minimal supervision. Here we propose an unsupervised approach to decoding neural states from human brain recordings acquired in a naturalistic context. We demonstrate our approach on continuous long-term electrocorticographic (ECoG) data recorded over many days from the brain surface of subjects in a hospital room, with simultaneous audio and video recordings. We first discovered clusters in high-dimensional ECoG recordings and then annotated coherent clusters using speech and movement labels extracted automatically from audio and video recordings. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Our results show that our unsupervised approach can discover distinct behaviors from ECoG data, including moving, speaking and resting. We verify the accuracy of our approach by comparing to manual annotations. Projecting the discovered cluster centers back onto the brain, this technique opens the door to automated functional brain mapping in natural settings

    A Data-Driven Approach for Tag Refinement and Localization in Web Videos

    Get PDF
    Tagging of visual content is becoming more and more widespread as web-based services and social networks have popularized tagging functionalities among their users. These user-generated tags are used to ease browsing and exploration of media collections, e.g. using tag clouds, or to retrieve multimedia content. However, not all media are equally tagged by users. Using the current systems is easy to tag a single photo, and even tagging a part of a photo, like a face, has become common in sites like Flickr and Facebook. On the other hand, tagging a video sequence is more complicated and time consuming, so that users just tag the overall content of a video. In this paper we present a method for automatic video annotation that increases the number of tags originally provided by users, and localizes them temporally, associating tags to keyframes. Our approach exploits collective knowledge embedded in user-generated tags and web sources, and visual similarity of keyframes and images uploaded to social sites like YouTube and Flickr, as well as web sources like Google and Bing. Given a keyframe, our method is able to select on the fly from these visual sources the training exemplars that should be the most relevant for this test sample, and proceeds to transfer labels across similar images. Compared to existing video tagging approaches that require training classifiers for each tag, our system has few parameters, is easy to implement and can deal with an open vocabulary scenario. We demonstrate the approach on tag refinement and localization on DUT-WEBV, a large dataset of web videos, and show state-of-the-art results.Comment: Preprint submitted to Computer Vision and Image Understanding (CVIU
    corecore