2,465 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Attribute-Graph: A Graph based approach to Image Ranking

    Full text link
    We propose a novel image representation, termed Attribute-Graph, to rank images by their semantic similarity to a given query image. An Attribute-Graph is an undirected fully connected graph, incorporating both local and global image characteristics. The graph nodes characterise objects as well as the overall scene context using mid-level semantic attributes, while the edges capture the object topology. We demonstrate the effectiveness of Attribute-Graphs by applying them to the problem of image ranking. We benchmark the performance of our algorithm on the 'rPascal' and 'rImageNet' datasets, which we have created in order to evaluate the ranking performance on complex queries containing multiple objects. Our experimental evaluation shows that modelling images as Attribute-Graphs results in improved ranking performance over existing techniques.Comment: In IEEE International Conference on Computer Vision (ICCV) 201

    A BENCHMARK FOR LARGE-SCALE HERITAGE POINT CLOUD SEMANTIC SEGMENTATION

    Get PDF
    The lack of benchmarking data for the semantic segmentation of digital heritage scenarios is hampering the development of automatic classification solutions in this field. Heritage 3D data feature complex structures and uncommon classes that prevent the simple deployment of available methods developed in other fields and for other types of data. The semantic classification of heritage 3D data would support the community in better understanding and analysing digital twins, facilitate restoration and conservation work, etc. In this paper, we present the first benchmark with millions of manually labelled 3D points belonging to heritage scenarios, realised to facilitate the development, training, testing and evaluation of machine and deep learning methods and algorithms in the heritage field. The proposed benchmark, available at http://archdataset.polito.it/, comprises datasets and classification results for better comparisons and insights into the strengths and weaknesses of different machine and deep learning approaches for heritage point cloud semantic segmentation, in addition to promoting a form of crowdsourcing to enrich the already annotated databas

    Consistency constraints and 3D building reconstruction

    Get PDF
    International audienceVirtual architectural (indoor) scenes are often modeled in 3D for various types of simulation systems. For instance, some authors propose methods dedicated to lighting, heat transfer, acoustic or radio-wave propagation simulations. These methods rely in most cases on a volumetric representation of the environment, with adjacency and incidence relationships. Unfortunately, many buildings data are only given by 2D plans and the 3D needs varies from one application to another. To face these problems, we propose a formal representation of consistency constraints dedicated to building interiors and associated with a topological model. We show that such a representation can be used for: (i) reconstructing 3D models from 2D architectural plans (ii) detecting automatically geometrical, topological and semantical inconsistencies (iii) designing automatic and semi-automatic operations to correct and enrich a 2D plan. All our constraints are homogeneously defined in 2D and 3D, implemented with generalized maps and used in modeling operations. We explain how this model can be successfully used for lighting and radio-wave propagation simulations

    Human detection in surveillance videos and its applications - a review

    Get PDF
    Detecting human beings accurately in a visual surveillance system is crucial for diverse application areas including abnormal event detection, human gait characterization, congestion analysis, person identification, gender classification and fall detection for elderly people. The first step of the detection process is to detect an object which is in motion. Object detection could be performed using background subtraction, optical flow and spatio-temporal filtering techniques. Once detected, a moving object could be classified as a human being using shape-based, texture-based or motion-based features. A comprehensive review with comparisons on available techniques for detecting human beings in surveillance videos is presented in this paper. The characteristics of few benchmark datasets as well as the future research directions on human detection have also been discussed
    corecore