62,721 research outputs found

    Performance evaluation of secondary control policies with respect to digital communications properties in inverter-based islanded microgrids

    Get PDF
    A key challenge for inverted-based microgrids working in islanded mode is to maintain their own frequency and voltage to a certain reference values while regulating the active and reactive power among distributed generators and loads. The implementation of frequency and voltage restoration control policies often requires the use of a digital communication network for real-time data exchange (tertiary control covers the coordi- nated operation of the microgrid and the host grid). Whenever a digital network is placed within the loop, the operation of the secondary control may be affected by the inherent properties of the communication technology. This paper analyses the effect that properties like transmission intervals and message dropouts have for four existing representative approaches to secondary control in a scalable islanded microgrid. The simulated results reveals pros and cons for each approach, and identifies threats that properly avoided or handled in advance can prevent failures that otherwise would occur. Selected experimental results on a low- scale laboratory microgrid corroborate the conclusions extracted from the simulation study.Peer ReviewedPostprint (author's final draft

    Analysis of the effect of clock drifts on frequency regulation and power sharing in inverter-based islanded microgrids

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Local hardware clocks in physically distributed computation devices hardly ever agree because clocks drift apart and the drift can be different for each device. This paper analyses the effect that local clock drifts have in the parallel operation of voltage source inverters (VSIs) in islanded microgrids (MG). The state-of-the-art control policies for frequency regulation and active power sharing in VSIs-based MGs are reviewed and selected prototype policies are then re-formulated in terms of clock drifts. Next, steady-state properties for these policies are analyzed. For each of the policies, analytical expressions are developed to provide an exact quantification of the impact that drifts have on frequency and active power equilibrium points. In addition, a closed-loop model that accommodates all the policies is derived, and the stability of the equilibrium points is characterized in terms of the clock drifts. Finally, the implementation of the analyzed policies in a laboratory MG provides experimental results that confirm the theoretical analysis.Peer ReviewedPostprint (author's final draft

    Exploiting Traffic Balancing and Multicast Efficiency in Distributed Video-on-Demand Architectures

    Get PDF
    Distributed Video-on-Demand (DVoD) systems are proposed as a solution to the limited streaming capacity and null scalability of centralized systems. In a previous work, we proposed a fully distributed large-scale VoD architecture, called Double P-Tree, which has shown itself to be a good approach to the design of flexible and scalable DVoD systems. In this paper, we present relevant design aspects related to video mapping and traffic balancing in order to improve Double P-Tree architecture performance. Our simulation results demonstrate that these techniques yield a more efficient system and considerably increase its streaming capacity. The results also show the crucial importance of topology connectivity in improving multicasting performance in DVoD systems. Finally, a comparison among several DVoD architectures was performed using simulation, and the results show that the Double P-Tree architecture incorporating mapping and load balancing policies outperforms similar DVoD architectures.This work was supported by the MCyT-Spain under contract TIC 2001-2592 and partially supported by the Generalitat de Catalunya- Grup de Recerca Consolidat 2001SGR-00218

    A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning

    Full text link
    Automatic decision-making approaches, such as reinforcement learning (RL), have been applied to (partially) solve the resource allocation problem adaptively in the cloud computing system. However, a complete cloud resource allocation framework exhibits high dimensions in state and action spaces, which prohibit the usefulness of traditional RL techniques. In addition, high power consumption has become one of the critical concerns in design and control of cloud computing systems, which degrades system reliability and increases cooling cost. An effective dynamic power management (DPM) policy should minimize power consumption while maintaining performance degradation within an acceptable level. Thus, a joint virtual machine (VM) resource allocation and power management framework is critical to the overall cloud computing system. Moreover, novel solution framework is necessary to address the even higher dimensions in state and action spaces. In this paper, we propose a novel hierarchical framework for solving the overall resource allocation and power management problem in cloud computing systems. The proposed hierarchical framework comprises a global tier for VM resource allocation to the servers and a local tier for distributed power management of local servers. The emerging deep reinforcement learning (DRL) technique, which can deal with complicated control problems with large state space, is adopted to solve the global tier problem. Furthermore, an autoencoder and a novel weight sharing structure are adopted to handle the high-dimensional state space and accelerate the convergence speed. On the other hand, the local tier of distributed server power managements comprises an LSTM based workload predictor and a model-free RL based power manager, operating in a distributed manner.Comment: accepted by 37th IEEE International Conference on Distributed Computing (ICDCS 2017

    A Case for Cooperative and Incentive-Based Coupling of Distributed Clusters

    Full text link
    Research interest in Grid computing has grown significantly over the past five years. Management of distributed resources is one of the key issues in Grid computing. Central to management of resources is the effectiveness of resource allocation as it determines the overall utility of the system. The current approaches to superscheduling in a grid environment are non-coordinated since application level schedulers or brokers make scheduling decisions independently of the others in the system. Clearly, this can exacerbate the load sharing and utilization problems of distributed resources due to suboptimal schedules that are likely to occur. To overcome these limitations, we propose a mechanism for coordinated sharing of distributed clusters based on computational economy. The resulting environment, called \emph{Grid-Federation}, allows the transparent use of resources from the federation when local resources are insufficient to meet its users' requirements. The use of computational economy methodology in coordinating resource allocation not only facilitates the QoS based scheduling, but also enhances utility delivered by resources.Comment: 22 pages, extended version of the conference paper published at IEEE Cluster'05, Boston, M

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})
    • …
    corecore