302 research outputs found

    Energy Efficient Cluster Based Routing Protocol for Dynamic and Static Nodes in Wireless Sensor Network

    Get PDF
    Power consumption is considered one of the most significant challenges in the wireless network sensors (WSNs). In this paper, an investigation of the power consumption is done by making a comparison between static and dynamic WSNs. We have compared the results of the static network with the results of the dynamic network. Static and dynamic wireless Sensor networks have the same architecture (Homogenous) and proposed protocol. Depending on the suggested protocol, the simulation results show that the energy consumption in the static wireless sensor network was less than the dynamic wireless sensor network. However, moving the sensors in the dynamic WSN present real improvement in delivering packets to the base station. In the proposed routing protocol, transmitting data process is done in a hierarchal way. Cheap sensors are introduced and deploy them intensively to improve the QoS in the network. The final results and the conclusion are reported

    Energy Aware Clustering and Aggregate Node Rotation with Sink Relocation in WSN

    Get PDF
    As the WSN used in industrial and Environmental monitoring the most critical issues in the WSN is to reduce the energy consumption to extend the lifetime of the wireless sensor network. The intermediate hop nodes are working throughout the data transmission so those nodes drain out their energy which automatically reduces the life time of the wireless sensor network. To overcome these drawbacks the EAC-ASR protocol (Energy Aware Clustering Aggregate Node Rotation) with sink relocation method four important processes which are present in this protocol was Clustering, data aggregation, mobile node rotation by swapping algorithm and sink relocation are applied. In this paper theoretical analysis and the simulation analysis are done and the result shows that the EAC-ASR protocol reduces the energy consumption and increase the energy efficiency. DOI: 10.17762/ijritcc2321-8169.150316

    An energy-efficient routing protocol for Hybrid-RFID Sensor Network

    Get PDF
    Radio Frequency Identification (RFID) systems facilitate detection and identification of objects that are not easily detectable or distinguishable. However, they do not provide information about the condition of the objects they detect. Wireless sensor networks (WSNs), on the other hand provide information about the condition of the objects as well as the environment. The integration of these two technologies results in a new type of smart network where RFID-based components are combined with sensors. This research proposes an integration technique that combines conventional wireless sensor nodes, sensor-tags, hybrid RFID-sensor nodes and a base station into a smart network named Hybrid RFID-Sensor Network (HRSN)

    Trust models in wireless sensor networks: A survey

    Full text link
    This paper introduces the security and trust concepts in wireless sensor networks and explains the difference between them, stating that even though both terms are used interchangeably when defining a secure system, they are not the same. The difference between reputation and trust is also explained, highlighting that reputation partially affects trust. The methodologies used to model trust and their references are presented. The factors affecting trust updating are summarised and some examples of the systems in which these factors have been implemented are given. The survey states that, even though researchers have started to explore the issue of trust in wireless sensor networks, they are still examining the trust associated with routing messages between nodes (binary events). However, wireless sensor networks are mainly deployed to monitor events and report data, both continuous and discrete. This leads to the development of new trust models addressing the continuous data issue and also to combine the data trust and the communication trust to infer the total trust. © 2010 Springer-Verlag Berlin Heidelberg

    FEHCA: A Fault-Tolerant Energy-Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks

    Get PDF
    Technological advancements have led to increased confidence in the design of large-scale wireless networks that comprise small energy constraint devices. Despite the boost in technological advancements, energy dissipation and fault tolerance are amongst the key deciding factors while designing and deploying wireless sensor networks. This paper proposes a Fault-tolerant Energy-efficient Hierarchical Clustering Algorithm (FEHCA) for wireless sensor networks (WSNs), which demonstrates energy-efficient clustering and fault-tolerant operation of cluster heads (CHs). It treats CHs as no special node but equally prone to faults as normal sensing nodes of the cluster. The proposed scheme addresses some of the limitations of prominent hierarchical clustering algorithms, such as the randomized election of the cluster heads after each round, which results in significant energy dissipation; non-consideration of the residual energy of the sensing nodes while selecting cluster heads, etc. It utilizes the capability of vector quantization to partition the deployed sensors into an optimal number of clusters and ensures that almost the entire area to be monitored is alive for most of the network’s lifetime. This supports better decision-making compared to decisions made on the basis of limited area sensing data after a few rounds of communication. The scheme is implemented for both friendly as well as hostile deployments. The simulation results are encouraging and validate the proposed algorithm.articl

    Energy-aware routing protocols in wireless sensor networks

    Get PDF
    Saving energy and increasing network lifetime are significant challenges in the field of Wireless Sensor Networks (WSNs). Energy-aware routing protocols have been introduced for WSNs to overcome limitations of WSN including limited power resources and difficulties renewing or recharging sensor nodes batteries. Furthermore, the potentially inhospitable environments of sensor locations, in some applications, such as the bottom of the ocean, or inside tornados also have to be considered. ZigBee is one of the latest communication standards designed for WSNs based on the IEEE 802.15.4 standard. The ZigBee standard supports two routing protocols, the Ad hoc On-demand Distance Vector (AODV), and the cluster-tree routing protocols. These protocols are implemented to establish the network, form clusters, and transfer data between the nodes. The AODV and the cluster-tree routing protocols are two of the most efficient routing protocols in terms of reducing the control message overhead, reducing the bandwidth usage in the network, and reducing the power consumption of wireless sensor nodes compared to other routing protocols. However, neither of these protocols considers the energy level or the energy consumption rate of the wireless sensor nodes during the establishment or routing processes. (Continues...)
    • 

    corecore