2,853 research outputs found

    Adapting Visual Question Answering Models for Enhancing Multimodal Community Q&A Platforms

    Full text link
    Question categorization and expert retrieval methods have been crucial for information organization and accessibility in community question & answering (CQA) platforms. Research in this area, however, has dealt with only the text modality. With the increasing multimodal nature of web content, we focus on extending these methods for CQA questions accompanied by images. Specifically, we leverage the success of representation learning for text and images in the visual question answering (VQA) domain, and adapt the underlying concept and architecture for automated category classification and expert retrieval on image-based questions posted on Yahoo! Chiebukuro, the Japanese counterpart of Yahoo! Answers. To the best of our knowledge, this is the first work to tackle the multimodality challenge in CQA, and to adapt VQA models for tasks on a more ecologically valid source of visual questions. Our analysis of the differences between visual QA and community QA data drives our proposal of novel augmentations of an attention method tailored for CQA, and use of auxiliary tasks for learning better grounding features. Our final model markedly outperforms the text-only and VQA model baselines for both tasks of classification and expert retrieval on real-world multimodal CQA data.Comment: Submitted for review at CIKM 201

    Hierarchical Text Classification: a review of current research

    Get PDF
    t is often the case that collections of documents are annotated with hierarchically-structured concepts. However, the benefits of this structure are rarely taken into account by commonly-used classification techniques. Conversely, Hierarchical Text Classification methods are devisedto take advantage of the labels’ organization to boost classification performance. With this work,we aim to deliver an updated overview of current research in this domain. We begin by definingthe task and framing it within the broader text classification area, examining important shared concepts such as text representation. Then, we dive into details regarding the specific task,providing a high-level description of its traditional approaches. We then summarize recentlyproposed methods, highlighting their main contributions. We additionally provide statisticsfor the most adopted datasets and describe the benefits of using evaluation metrics tailored to hierarchical settings. Finally, a selection of recent proposals is benchmarked against non-hierarchical baselines on five domain-specific datasets

    Enrichment of ontologies using machine learning and summarization

    Get PDF
    Biomedical ontologies are structured knowledge systems in biomedicine. They play a major role in enabling precise communications in support of healthcare applications, e.g., Electronic Healthcare Records (EHR) systems. Biomedical ontologies are used in many different contexts to facilitate information and knowledge management. The most widely used clinical ontology is the SNOMED CT. Placing a new concept into its proper position in an ontology is a fundamental task in its lifecycle of curation and enrichment. A large biomedical ontology, which typically consists of many tens of thousands of concepts and relationships, can be viewed as a complex network with concepts as nodes and relationships as links. This large-size node-link diagram can easily become overwhelming for humans to understand or work with. Adding concepts is a challenging and time-consuming task that requires domain knowledge and ontology skills. IS-A links (aka subclass links) are the most important relationships of an ontology, enabling the inheritance of other relationships. The position of a concept, represented by its IS-A links to other concepts, determines how accurately it is modeled. Therefore, considering as many parent candidate concepts as possible leads to better modeling of this concept. Traditionally, curators rely on classifiers to place concepts into ontologies. However, this assumes the accurate relationship modeling of the new concept as well as the existing concepts. Since many concepts in existing ontologies, are underspecified in terms of their relationships, the placement by classifiers may be wrong. In cases where the curator does not manually check the automatic placement by classifier programs, concepts may end up in wrong positions in the IS-A hierarchy. A user searching for a concept, without knowing its precise name, would not find it in its expected location. Automated or semi-automated techniques that can place a concept or narrow down the places where to insert it, are highly desirable. Hence, this dissertation is addressing the problem of concept placement by automatically identifying IS-A links and potential parent concepts correctly and effectively for new concepts, with the assistance of two powerful techniques, Machine Learning (ML) and Abstraction Networks (AbNs). Modern neural networks have revolutionized Machine Learning in vision and Natural Language Processing (NLP). They also show great promise for ontology-related tasks, including ontology enrichment, i.e., insertion of new concepts. This dissertation presents research using ML and AbNs to achieve knowledge enrichment of ontologies. Abstraction networks (AbNs), are compact summary networks that preserve a significant amount of the semantics and structure of the underlying ontologies. An Abstraction Network is automatically derived from the ontology itself. It consists of nodes, where each node represents a set of concepts that are similar in their structure and semantics. Various kinds of AbNs have been previously developed by the Structural Analysis of Biomedical Ontologies Center (SABOC) to support the summarization, visualization, and quality assurance (QA) of biomedical ontologies. Two basic kinds of AbNs are the Area Taxonomy and the Partial-area Taxonomy, which have been developed for various biomedical ontologies (e.g., SNOMED CT of SNOMED International and NCIt of the National Cancer Institute). This dissertation presents four enrichment studies of SNOMED CT, utilizing both ML and AbN-based techniques

    A multi-level approach for hierarchical Ticket Classification

    Get PDF
    The automatic categorization of support tickets is a fundamental tool for modern businesses. Such requests are most commonly composed of concise textual descriptions that are noisy and filled with technical jargon. In this paper, we test the effectiveness of pre-trained LMs for the classification of issues related to software bugs. First, we test several strategies to produce single, ticket-wise representations starting from their BERT-generated word embeddings. Then, we showcase a simple yet effective way to build a multi-level classifier for the categorization of documents with two hierarchically dependent labels. We experiment on a public bugs dataset and compare our results with standard BERT-based and traditional SVM classifiers. Our findings suggest that both embedding strategies and hierarchical label dependencies considerably impact classification accuracy

    Text Classification

    Get PDF
    There is an abundance of text data in this world but most of it is raw. We need to extract information from this data to make use of it. One way to extract this information from raw text is to apply informative labels drawn from a pre-defined fixed set i.e. Text Classification. In this thesis, we focus on the general problem of text classification, and work towards solving challenges associated to binary/multi-class/multi-label classification. More specifically, we deal with the problem of (i) Zero-shot labels during testing; (ii) Active learning for text screening; (iii) Multi-label classification under low supervision; (iv) Structured label space; (v) Classifying pairs of words in raw text i.e. Relation Extraction. For (i), we use a zero-shot classification model that utilizes independently learned semantic embeddings. Regarding (ii), we propose a novel active learning algorithm that reduces problem of bias in naive active learning algorithms. For (iii), we propose neural candidate-selector architecture that starts from a set of high-recall candidate labels to obtain high-precision predictions. In the case of (iv), we proposed an attention based neural tree decoder that recursively decodes an abstract into the ontology tree. For (v), we propose using second-order relations that are derived by explicitly connecting pairs of words via context token(s) for improved relation extraction. We use a wide variety of both traditional and deep machine learning tools. More specifically, we used traditional machine learning models like multi-valued linear regression and logistic regression for (i, ii), deep convolutional neural networks for (iii), recurrent neural networks for (iv) and transformer networks for (v)

    Embedding Based Link Prediction for Knowledge Graph Completion

    Get PDF
    Knowledge Graphs (KGs) are the most widely used representation of structured information about a particular domain consisting of billions of facts in the form of entities (nodes) and relations (edges) between them. Besides, the KGs also encapsulate the semantic type information of the entities. The last two decades have witnessed a constant growth of KGs in various domains such as government, scholarly data, biomedical domains, etc. KGs have been used in Machine Learning based applications such as entity linking, question answering, recommender systems, etc. Open KGs are mostly heuristically created, automatically generated from heterogeneous resources such as text, images, etc., or are human-curated. However, these KGs are often incomplete, i.e., there are missing links between the entities and missing links between the entities and their corresponding entity types. This thesis focuses on addressing these two challenges of link prediction for Knowledge Graph Completion (KGC): \textbf{(i)} General Link Prediction in KGs that include head and tail prediction, triple classification, and \textbf{(ii)} Entity Type Prediction. Most of the graph mining algorithms are proven to be of high complexity, deterring their usage in KG-based applications. In recent years, KG embeddings have been trained to represent the entities and relations in the KG in a low-dimensional vector space preserving the graph structure. In most published works such as the translational models, convolutional models, semantic matching, etc., the triple information is used to generate the latent representation of the entities and relations. In this dissertation, it is argued that contextual information about the entities obtained from the random walks, and textual entity descriptions, are the keys to improving the latent representation of the entities for KGC. The experimental results show that the knowledge obtained from the context of the entities supports the hypothesis. Several methods have been proposed for KGC and their effectiveness is shown empirically in this thesis. Firstly, a novel multi-hop attentive KG embedding model MADLINK is proposed for Link Prediction. It considers the contextual information of the entities by using random walks as well as textual entity descriptions of the entities. Secondly, a novel architecture exploiting the information contained in a pre-trained contextual Neural Language Model (NLM) is proposed for Triple Classification. Thirdly, the limitations of the current state-of-the-art (SoTA) entity type prediction models have been analysed and a novel entity typing model CAT2Type is proposed that exploits the Wikipedia Categories which is one of the most under-treated features of the KGs. This model can also be used to predict missing types of unseen entities i.e., the newly added entities in the KG. Finally, another novel architecture GRAND is proposed to predict the missing entity types in KGs using multi-label, multi-class, and hierarchical classification by leveraging different strategic graph walks in the KGs. The extensive experiments and ablation studies show that all the proposed models outperform the current SoTA models and set new baselines for KGC. The proposed models establish that the NLMs and the contextual information of the entities in the KGs together with the different neural network architectures benefit KGC. The promising results and observations open up interesting scopes for future research involving exploiting the proposed models in domain-specific KGs such as scholarly data, biomedical data, etc. Furthermore, the link prediction model can be exploited as a base model for the entity alignment task as it considers the neighbourhood information of the entities
    • …
    corecore