97,232 research outputs found

    A Hierarchical Distributed Processing Framework for Big Image Data

    Get PDF
    Abstract—This paper introduces an effective processing framework nominated ICP (Image Cloud Processing) to powerfully cope with the data explosion in image processing field. While most previous researches focus on optimizing the image processing algorithms to gain higher efficiency, our work dedicates to providing a general framework for those image processing algorithms, which can be implemented in parallel so as to achieve a boost in time efficiency without compromising the results performance along with the increasing image scale. The proposed ICP framework consists of two mechanisms, i.e. SICP (Static ICP) and DICP (Dynamic ICP). Specifically, SICP is aimed at processing the big image data pre-stored in the distributed system, while DICP is proposed for dynamic input. To accomplish SICP, two novel data representations named P-Image and Big-Image are designed to cooperate with MapReduce to achieve more optimized configuration and higher efficiency. DICP is implemented through a parallel processing procedure working with the traditional processing mechanism of the distributed system. Representative results of comprehensive experiments on the challenging ImageNet dataset are selected to validate the capacity of our proposed ICP framework over the traditional state-of-the-art methods, both in time efficiency and quality of results

    Parallel Hierarchical Affinity Propagation with MapReduce

    Full text link
    The accelerated evolution and explosion of the Internet and social media is generating voluminous quantities of data (on zettabyte scales). Paramount amongst the desires to manipulate and extract actionable intelligence from vast big data volumes is the need for scalable, performance-conscious analytics algorithms. To directly address this need, we propose a novel MapReduce implementation of the exemplar-based clustering algorithm known as Affinity Propagation. Our parallelization strategy extends to the multilevel Hierarchical Affinity Propagation algorithm and enables tiered aggregation of unstructured data with minimal free parameters, in principle requiring only a similarity measure between data points. We detail the linear run-time complexity of our approach, overcoming the limiting quadratic complexity of the original algorithm. Experimental validation of our clustering methodology on a variety of synthetic and real data sets (e.g. images and point data) demonstrates our competitiveness against other state-of-the-art MapReduce clustering techniques
    • …
    corecore