8 research outputs found

    フロアプラン指向高位合成手法とイジング計算機応用に関する研究

    Get PDF
    早大学位記番号:新7790早稲田大

    Characterization and Avoidance of Critical Pipeline Structures in Aggressive Superscalar Processors

    Get PDF
    In recent years, with only small fractions of modern processors now accessible in a single cycle, computer architects constantly fight against propagation issues across the die. Unfortunately this trend continues to shift inward, and now the even most internal features of the pipeline are designed around communication, not computation. To address the inward creep of this constraint, this work focuses on the characterization of communication within the pipeline itself, architectural techniques to avoid it when possible, and layout co-design for early detection of problems. I present work in creating a novel detection tool for common case operand movement which can rapidly characterize an applications dataflow patterns. The results produced are suitable for exploitation as a small number of patterns can describe a significant portion of modern applications. Work on dynamic dependence collapsing takes the observations from the pattern results and shows how certain groups of operations can be dynamically grouped, avoiding unnecessary communication between individual instructions. This technique also amplifies the efficiency of pipeline data structures such as the reorder buffer, increasing both IPC and frequency. I also identify the same sets of collapsible instructions at compile time, producing the same benefits with minimal hardware complexity. This technique is also done in a backward compatible manner as the groups are exposed by simple reordering of the binarys instructions. I present aggressive pipelining approaches for these resources which avoids the critical timing often presumed necessary in aggressive superscalar processors. As these structures are designed for the worst case, pipelining them can produce greater frequency benefit than IPC loss. I also use the observation that the dynamic issue order for instructions in aggressive superscalar processors is predictable. Thus, a hardware mechanism is introduced for caching the wakeup order for groups of instructions efficiently. These wakeup vectors are then used to speculatively schedule instructions, avoiding the dynamic scheduling when it is not necessary. Finally, I present a novel approach to fast and high-quality chip layout. By allowing architects to quickly evaluate what if scenarios during early high-level design, chip designs are less likely to encounter implementation problems later in the process.Ph.D.Committee Chair: Scott Wills; Committee Member: David Schimmel; Committee Member: Gabriel Loh; Committee Member: Hsien-Hsin Lee; Committee Member: Yorai Ward

    Design and Validation of Network-on-Chip Architectures for the Next Generation of Multi-synchronous, Reliable, and Reconfigurable Embedded Systems

    Get PDF
    NETWORK-ON-CHIP (NoC) design is today at a crossroad. On one hand, the design principles to efficiently implement interconnection networks in the resource-constrained on-chip setting have stabilized. On the other hand, the requirements on embedded system design are far from stabilizing. Embedded systems are composed by assembling together heterogeneous components featuring differentiated operating speeds and ad-hoc counter measures must be adopted to bridge frequency domains. Moreover, an unmistakable trend toward enhanced reconfigurability is clearly underway due to the increasing complexity of applications. At the same time, the technology effect is manyfold since it provides unprecedented levels of system integration but it also brings new severe constraints to the forefront: power budget restrictions, overheating concerns, circuit delay and power variability, permanent fault, increased probability of transient faults. Supporting different degrees of reconfigurability and flexibility in the parallel hardware platform cannot be however achieved with the incremental evolution of current design techniques, but requires a disruptive approach and a major increase in complexity. In addition, new reliability challenges cannot be solved by using traditional fault tolerance techniques alone but the reliability approach must be also part of the overall reconfiguration methodology. In this thesis we take on the challenge of engineering a NoC architectures for the next generation systems and we provide design methods able to overcome the conventional way of implementing multi-synchronous, reliable and reconfigurable NoC. Our analysis is not only limited to research novel approaches to the specific challenges of the NoC architecture but we also co-design the solutions in a single integrated framework. Interdependencies between different NoC features are detected ahead of time and we finally avoid the engineering of highly optimized solutions to specific problems that however coexist inefficiently together in the final NoC architecture. To conclude, a silicon implementation by means of a testchip tape-out and a prototype on a FPGA board validate the feasibility and effectivenes

    Some Applications of the Weighted Combinatorial Laplacian

    Get PDF
    The weighted combinatorial Laplacian of a graph is a symmetric matrix which is the discrete analogue of the Laplacian operator. In this thesis, we will study a new application of this matrix to matching theory yielding a new characterization of factor-criticality in graphs and matroids. Other applications are from the area of the physical design of very large scale integrated circuits. The placement of the gates includes the minimization of a quadratic form given by a weighted Laplacian. A method based on the dual constrained subgradient method is proposed to solve the simultaneous placement and gate-sizing problem. A crucial step of this method is the projection to the flow space of an associated graph, which can be performed by minimizing a quadratic form given by the unweighted combinatorial Laplacian.Andwendungen der gewichteten kombinatorischen Laplace-Matrix Die gewichtete kombinatorische Laplace-Matrix ist das diskrete Analogon des Laplace-Operators. In dieser Arbeit stellen wir eine neuartige Charakterisierung von Faktor-Kritikalität von Graphen und Matroiden mit Hilfe dieser Matrix vor. Wir untersuchen andere Anwendungen im Bereich des Entwurfs von höchstintegrierten Schaltkreisen. Die Platzierung basiert auf der Minimierung einer quadratischen Form, die durch eine gewichtete kombinatorische Laplace-Matrix gegeben ist. Wir präsentieren einen Algorithmus für das allgemeine simultane Platzierungs- und Gattergrößen-Optimierungsproblem, der auf der dualen Subgradientenmethode basiert. Ein wichtiger Bestandteil dieses Verfahrens ist eine Projektion auf den Flussraum eines assoziierten Graphen, die als die Minimierung einer durch die Laplace-Matrix gegebenen quadratischen Form aufgefasst werden kann

    Tiled microprocessors

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 251-258).Current-day microprocessors have reached the point of diminishing returns due to inherent scalability limitations. This thesis examines the tiled microprocessor, a class of microprocessor which is physically scalable but inherits many of the desirable properties of conventional microprocessors. Tiled microprocessors are composed of an array of replicated tiles connected by a special class of network, the Scalar Operand Network (SON), which is optimized for low-latency, low-occupancy communication between remote ALUs on different tiles. Tiled microprocessors can be constructed to scale to 100's or 1000's of functional units. This thesis identifies seven key criteria for achieving physical scalability in tiled microprocessors. It employs an archetypal tiled microprocessor to examine the challenges in achieving these criteria and to explore the properties of Scalar Operand Networks. The thesis develops the field of SONs in three major ways: it introduces the 5-tuple performance metric, it describes a complete, high-frequency SON implementation, and it proposes a taxonomy, called AsTrO, for categorizing them.(cont.) To develop these ideas, the thesis details the design, implementation and analysis of a tiled microprocessor prototype, the Raw Microprocessor, which was implemented at MIT in 180 nm technology. Overall, compared to Raw, recent commercial processors with half the transistors required 30x as many lines of code, occupied 100x as many designers, contained 50x as many pre-tapeout bugs, and resulted in 33x as many post-tapeout bugs. At the same time, the Raw microprocessor proves to be more versatile in exploiting ILP, stream, and server-farm workloads with modest to large amounts of parallelism.by Michael Bedford Taylor.Ph.D

    Second Conference on Artificial Intelligence for Space Applications

    Get PDF
    The proceedings of the conference are presented. This second conference on Artificial Intelligence for Space Applications brings together a diversity of scientific and engineering work and is intended to provide an opportunity for those who employ AI methods in space applications to identify common goals and to discuss issues of general interest in the AI community

    Actual service life prediction of building components

    Get PDF

    Critical Issues in the History of Spaceflight

    Get PDF
    At a May 1981 "Proseminar in Space History"held at the Smithsonian Institution's National Air and Space Museum (NASM) in Washington, DC, historians came together to consider the state of the discipline of space history. It was an historic occasion. The community of scholars interested in the history of spaceflight was not large; previously, well-meaning but untrained aficionados consumed with artifacts had dominated the field, to the exclusion of the larger context. At a fundamental level, this proseminar represented a "declaration of independence" for what might be called the "new aerospace history." In retrospect, it may be interpreted as marking the rise of space history as a recognizable subdiscipline within the field of U.S. history. Bringing together a diverse collection of scholars to review the state of the art in space history, this proseminar helped in a fundamental manner to define the field and to chart a course for future research. Its participants set about the task of charting a course for collecting, preserving, and disseminating the history of space exploration within a larger context of space policy and technology. In large measure, the course charted by the participants in this 1981 proseminar aided in advancing a very successful agenda of historical research, writing, and understanding of space history. Not every research project has yielded acceptable results, nor can it be expected to do so, but the sum of the effort since 1981 has been impressive. The opportunities for both the exploration of space and for recording its history have been significant. Both endeavors are noble and aimed at the enhancement of humanity. Whither the history of spaceflight? Only time will tell. But there has been an emergent "new aerospace history" of which space history is a central part that moves beyond an overriding concern for the details of the artifact to emphasize the broader role of the spacecraft. More importantly, it emphasizes the whole technological system, including not just the vehicle but also the other components that make up the aerospace climate, as an integral part of the human experience. It suggests that many unanswered questions spur the development of flight and that inquisitive individuals seek to know that which they do not understand
    corecore