856 research outputs found

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    Video streaming

    Get PDF

    QoE Modelling, Measurement and Prediction: A Review

    Full text link
    In mobile computing systems, users can access network services anywhere and anytime using mobile devices such as tablets and smart phones. These devices connect to the Internet via network or telecommunications operators. Users usually have some expectations about the services provided to them by different operators. Users' expectations along with additional factors such as cognitive and behavioural states, cost, and network quality of service (QoS) may determine their quality of experience (QoE). If users are not satisfied with their QoE, they may switch to different providers or may stop using a particular application or service. Thus, QoE measurement and prediction techniques may benefit users in availing personalized services from service providers. On the other hand, it can help service providers to achieve lower user-operator switchover. This paper presents a review of the state-the-art research in the area of QoE modelling, measurement and prediction. In particular, we investigate and discuss the strengths and shortcomings of existing techniques. Finally, we present future research directions for developing novel QoE measurement and prediction technique

    A machine learning-based framework for preventing video freezes in HTTP adaptive streaming

    Get PDF
    HTTP Adaptive Streaming (HAS) represents the dominant technology to deliver videos over the Internet, due to its ability to adapt the video quality to the available bandwidth. Despite that, HAS clients can still suffer from freezes in the video playout, the main factor influencing users' Quality of Experience (QoE). To reduce video freezes, we propose a network-based framework, where a network controller prioritizes the delivery of particular video segments to prevent freezes at the clients. This framework is based on OpenFlow, a widely adopted protocol to implement the software-defined networking principle. The main element of the controller is a Machine Learning (ML) engine based on the random undersampling boosting algorithm and fuzzy logic, which can detect when a client is close to a freeze and drive the network prioritization to avoid it. This decision is based on measurements collected from the network nodes only, without any knowledge on the streamed videos or on the clients' characteristics. In this paper, we detail the design of the proposed ML-based framework and compare its performance with other benchmarking HAS solutions, under various video streaming scenarios. Particularly, we show through extensive experimentation that the proposed approach can reduce video freezes and freeze time with about 65% and 45% respectively, when compared to benchmarking algorithms. These results represent a major improvement for the QoE of the users watching multimedia content online

    A telecom analytics framework for dynamic quality of service management

    Get PDF
    Since the beginning of Internet, Internet Service Providers (ISP) have seen the need of giving to users? traffic different treatments defined by agree- ments between ISP and customers. This procedure, known as Quality of Service Management, has not much changed in the last years (DiffServ and Deep Pack-et Inspection have been the most chosen mechanisms). However, the incremen-tal growth of Internet users and services jointly with the application of recent Ma- chine Learning techniques, open up the possibility of going one step for-ward in the smart management of network traffic. In this paper, we first make a survey of current tools and techniques for QoS Management. Then we intro-duce clustering and classifying Machine Learning techniques for traffic charac-terization and the concept of Quality of Experience. Finally, with all these com-ponents, we present a brand new framework that will manage in a smart way Quality of Service in a telecom Big Data based scenario, both for mobile and fixed communications
    corecore