5,873 research outputs found

    Rain Removal in Traffic Surveillance: Does it Matter?

    Get PDF
    Varying weather conditions, including rainfall and snowfall, are generally regarded as a challenge for computer vision algorithms. One proposed solution to the challenges induced by rain and snowfall is to artificially remove the rain from images or video using rain removal algorithms. It is the promise of these algorithms that the rain-removed image frames will improve the performance of subsequent segmentation and tracking algorithms. However, rain removal algorithms are typically evaluated on their ability to remove synthetic rain on a small subset of images. Currently, their behavior is unknown on real-world videos when integrated with a typical computer vision pipeline. In this paper, we review the existing rain removal algorithms and propose a new dataset that consists of 22 traffic surveillance sequences under a broad variety of weather conditions that all include either rain or snowfall. We propose a new evaluation protocol that evaluates the rain removal algorithms on their ability to improve the performance of subsequent segmentation, instance segmentation, and feature tracking algorithms under rain and snow. If successful, the de-rained frames of a rain removal algorithm should improve segmentation performance and increase the number of accurately tracked features. The results show that a recent single-frame-based rain removal algorithm increases the segmentation performance by 19.7% on our proposed dataset, but it eventually decreases the feature tracking performance and showed mixed results with recent instance segmentation methods. However, the best video-based rain removal algorithm improves the feature tracking accuracy by 7.72%.Comment: Published in IEEE Transactions on Intelligent Transportation System

    Video Adverse-Weather-Component Suppression Network via Weather Messenger and Adversarial Backpropagation

    Full text link
    Although convolutional neural networks (CNNs) have been proposed to remove adverse weather conditions in single images using a single set of pre-trained weights, they fail to restore weather videos due to the absence of temporal information. Furthermore, existing methods for removing adverse weather conditions (e.g., rain, fog, and snow) from videos can only handle one type of adverse weather. In this work, we propose the first framework for restoring videos from all adverse weather conditions by developing a video adverse-weather-component suppression network (ViWS-Net). To achieve this, we first devise a weather-agnostic video transformer encoder with multiple transformer stages. Moreover, we design a long short-term temporal modeling mechanism for weather messenger to early fuse input adjacent video frames and learn weather-specific information. We further introduce a weather discriminator with gradient reversion, to maintain the weather-invariant common information and suppress the weather-specific information in pixel features, by adversarially predicting weather types. Finally, we develop a messenger-driven video transformer decoder to retrieve the residual weather-specific feature, which is spatiotemporally aggregated with hierarchical pixel features and refined to predict the clean target frame of input videos. Experimental results, on benchmark datasets and real-world weather videos, demonstrate that our ViWS-Net outperforms current state-of-the-art methods in terms of restoring videos degraded by any weather condition

    MSP-Former: Multi-Scale Projection Transformer for Single Image Desnowing

    Full text link
    Image restoration of snow scenes in severe weather is a difficult task. Snow images have complex degradations and are cluttered over clean images, changing the distribution of clean images. The previous methods based on CNNs are challenging to remove perfectly in restoring snow scenes due to their local inductive biases' lack of a specific global modeling ability. In this paper, we apply the vision transformer to the task of snow removal from a single image. Specifically, we propose a parallel network architecture split along the channel, performing local feature refinement and global information modeling separately. We utilize a channel shuffle operation to combine their respective strengths to enhance network performance. Second, we propose the MSP module, which utilizes multi-scale avgpool to aggregate information of different sizes and simultaneously performs multi-scale projection self-attention on multi-head self-attention to improve the representation ability of the model under different scale degradations. Finally, we design a lightweight and simple local capture module, which can refine the local capture capability of the model. In the experimental part, we conduct extensive experiments to demonstrate the superiority of our method. We compared the previous snow removal methods on three snow scene datasets. The experimental results show that our method surpasses the state-of-the-art methods with fewer parameters and computation. We achieve substantial growth by 1.99dB and SSIM 0.03 on the CSD test dataset. On the SRRS and Snow100K datasets, we also increased PSNR by 2.47dB and 1.62dB compared with the Transweather approach and improved by 0.03 in SSIM. In the visual comparison section, our MSP-Former also achieves better visual effects than existing methods, proving the usability of our method
    • …
    corecore