143 research outputs found

    Survey on Quality Analysis of Collaboration Motivation Approach in Wireless Ad Hoc Networks

    Get PDF
    In Wireless Ad Hoc Networks (WANETs), tasks are conducted based on the cooperation of nodes in the networks. However, since the nodes are usually constrained by limited computation resources, selfish nodes may refuse to be cooperative. Reputation system is one of the main solutions to the node non cooperation problem. A reputation system evaluates node behaviours by reputation values and uses a reputation threshold to distinguish trustworthy nodes and untrustworthy nodes. Although this system has been widely used, very little research has been devoted to investigating the effectiveness of the node cooperation incentives provided by the systems. We propose a protocol called Enhanced Reverse Ad Hoc On Demand Vector Routing Protocol (ERAODV), which uses Hybrid Reputation System (HRS). A Hybrid Reputation system is an enhanced version of Classical Reputation System (CRS). Unlike the CRS it takes into account all the reputation values from the node to determine whether it is trustworthy or not. Keywords: WANET; Reputation System; Price Based System; Quality Analysis; Multipath Routing

    Towards Trustworthy, Efficient and Scalable Distributed Wireless Systems

    Get PDF
    Advances in wireless technologies have enabled distributed mobile devices to connect with each other to form distributed wireless systems. Due to the absence of infrastructure, distributed wireless systems require node cooperation in multi-hop routing. However, the openness and decentralized nature of distributed wireless systems where each node labors under a resource constraint introduces three challenges: (1) cooperation incentives that effectively encourage nodes to offer services and thwart the intentions of selfish and malicious nodes, (2) cooperation incentives that are efficient to deploy, use and maintain, and (3) routing to efficiently deliver messages with less overhead and lower delay. While most previous cooperation incentive mechanisms rely on either a reputation system or a price system, neither provides sufficiently effective cooperation incentives nor efficient resource consumption. Also, previous routing algorithms are not sufficiently efficient in terms of routing overhead or delay. In this research, we propose mechanisms to improve the trustworthiness, scalability, and efficiency of the distributed wireless systems. Regarding trustworthiness, we study previous cooperation incentives based on game theory models. We then propose an integrated system that combines a reputation system and a price system to leverage the advantages of both methods to provide trustworthy services. Analytical and simulation results show higher performance for the integrated system compared to the other two systems in terms of the effectiveness of the cooperation incentives and detection of selfish nodes. Regarding scalability in a large-scale system, we propose a hierarchical Account-aided Reputation Management system (ARM) to efficiently and effectively provide cooperation incentives with small overhead. To globally collect all node reputation information to accurately calculate node reputation information and detect abnormal reputation information with low overhead, ARM builds a hierarchical locality-aware Distributed Hash Table (DHT) infrastructure for the efficient and integrated operation of both reputation systems and price systems. Based on the DHT infrastructure, ARM can reduce the reputation management overhead in reputation and price systems. We also design a distributed reputation manager auditing protocol to detect a malicious reputation manager. The experimental results show that ARM can detect the uncooperative nodes that gain fraudulent benefits while still being considered as trustworthy in previous reputation and price systems. Also, it can effectively identify misreported, falsified, and conspiratorial information, providing accurate node reputations that truly reflect node behaviors. Regarding an efficient distributed system, we propose a social network and duration utility-based distributed multi-copy routing protocol for delay tolerant networks based on the ARM system. The routing protocol fully exploits node movement patterns in the social network to increase delivery throughput and decrease delivery delay while generating low overhead. The simulation results show that the proposed routing protocol outperforms the epidemic routing and spray and wait routing in terms of higher message delivery throughput, lower message delivery delay, lower message delivery overhead, and higher packet delivery success rate. The three components proposed in this dissertation research improve the trustworthiness, scalability, and efficiency of distributed wireless systems to meet the requirements of diversified distributed wireless applications

    CRM: a new dynamic cross-layer reputation computation model in wireless networks

    Get PDF
    This is the author accepted manuscript. The final version is available from University Press (OUP) via the DOI in this record.Multi-hop wireless networks (MWNs) have been widely accepted as an indispensable component of next-generation communication systems due to their broad applications and easy deployment without relying on any infrastructure. Although showing huge benefits, MWNs face many security problems, especially the internal multi-layer security threats being one of the most challenging issues. Since most security mechanisms require the cooperation of nodes, characterizing and learning actions of neighboring nodes and the evolution of these actions over time is vital to construct an efficient and robust solution for security-sensitive applications such as social networking, mobile banking, and teleconferencing. In this paper, we propose a new dynamic cross-layer reputation computation model named CRM to dynamically characterize and quantify actions of nodes. CRM couples uncertainty based conventional layered reputation computation model with cross-layer design and multi-level security technology to identify malicious nodes and preserve security against internal multi-layer threats. Simulation results and performance analyses demonstrate that CRM can provide rapid and accurate malicious node identification and management, and implement the security preservation against the internal multi-layer and bad mouthing attacks more effectively and efficiently than existing models.The authors would like to thank anonymous reviewers and editors for their constructive comments. This work is supported by: 1. Changjiang Scholars and Innovative Research Team in University (IRT1078), 2. the Key Program of NSFC-Guangdong Union Foundation (U1135002), 3. National Natural Science Foundation of China (61202390), 4. Fujian Natural Science Foundation:2013J01222, 5. the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications, Ministry of Education)

    Sector Routing Protocol (SRP) in Ad-hoc Networks

    Get PDF
    Routing protocols for wireless ad-hoc networks face the challenge of dynamic topology due to node mobility, limited channel bandwidth and low transmission power. Both proactive and reactive protocols have trade-off in them. Proactive protocols have large overhead and less latency while reactive protocols have less overhead and more latency. The ZRP is a hybrid protocol that overcomes the shortcomings of both proactive and reactive routing protocol. ZRP divides the entire network into overlapping zones of variable size where routing inside the zone is performed using proactive approach and outside the zone is performed using reactive approach. Keywords: Ad-hoc Networks, Routing, Reactive, Proactive, ZRP

    Effective Handover Technique in Cluster Based MANET Using Cooperative Communication

    Full text link
    Mobile ad hoc networks (MANETs) are becoming increasingly common now a days and typical network loads considered for MANETs are increasing as applications evolve. This increases the importance of bandwidth efficiency and requirements on energy consumption delay and jitter. Coordinated channel access protocols have been shown to be well suited for MANETs under uniform load distributions. However, these protocols are not well suited for non-uniform load distributions as uncoordinated channel access protocols due to the lack of on-demand dynamic channel allocation mechanisms that exist in infrastructure based coordinated protocols. We have considered a lightweight dynamic channel allocation algorithm and a cooperative load balancing strategy that are helpful for the cluster based MANETs and an effective handover technique to improve the increased packet transmission mechanism. This helps in reduce jitter, packet delay and packet transfer speed, we use a novel handover algorithm to address this problem We present protocols that utilize these mechanisms to improve performance in terms of throughput, energy consumption and inter-packet delay variation (IPDV)

    Comparative Study of Cooperation Tools for Mobile Ad Hoc Networks

    Get PDF

    A Novel Cooperative Intrusion Detection System for Mobile Ad Hoc Networks

    Get PDF
    Mobile ad hoc networks (MANETs) have experienced rapid growth in their use for various military, medical, and commercial scenarios. This is due to their dynamic nature that enables the deployment of such networks, in any target environment, without the need for a pre-existing infrastructure. On the other hand, the unique characteristics of MANETs, such as the lack of central networking points, limited wireless range, and constrained resources, have made the quest for securing such networks a challenging task. A large number of studies have focused on intrusion detection systems (IDSs) as a solid line of defense against various attacks targeting the vulnerable nature of MANETs. Since cooperation between nodes is mandatory to detect complex attacks in real time, various solutions have been proposed to provide cooperative IDSs (CIDSs) in efforts to improve detection efficiency. However, all of these solutions suffer from high rates of false alarms, and they violate the constrained-bandwidth nature of MANETs. To overcome these two problems, this research presented a novel CIDS utilizing the concept of social communities and the Dempster-Shafer theory (DST) of evidence. The concept of social communities was intended to establish reliable cooperative detection reporting while consuming minimal bandwidth. On the other hand, DST targeted decreasing false accusations through honoring partial/lack of evidence obtained solely from reliable sources. Experimental evaluation of the proposed CIDS resulted in consistently high detection rates, low false alarms rates, and low bandwidth consumption. The results of this research demonstrated the viability of applying the social communities concept combined with DST in achieving high detection accuracy and minimized bandwidth consumption throughout the detection process

    Evaluation of on-demand routing in mobile ad hoc networks and proposal for a secure routing protocol

    Get PDF
    Secure routing Mobile Ad hoc Networks (MANETs) has emerged as an important MANET research area. Initial work in MANET focused mainly on the problem of providing efficient mechanisms for finding paths in very dynamic networks, without considering the security of the routing process. Because of this, a number of attacks exploit these routing vulnerabilities to manipulate MANETs. In this thesis, we performed an in-depth evaluation and performance analysis of existing MANET Routing protocols, identifying Dynamic Source Routing (DSR) as the most robust (based on throughput, latency and routing overhead) which can be secured with negligible routing efficiency trade-off. We describe security threats, specifically showing their effects on DSR. We proposed a new routing protocol, named Authenticated Source Routing for Ad hoc Networks (ASRAN) which is an out-of-band certification-based, authenticated source routing protocol with modifications to the route acquisition process of DSR to defeat all identified attacks. Simulation studies confirm that ASRAN has a good trade-off balance in reference to the addition of security and routing efficiency

    Comparative Study of Cooperation Tools for Mobile Ad Hoc Networks

    Get PDF
    Mobile ad hoc networks are formed spontaneously to use the wireless medium for communication among nodes. Each node in this type of network is its own authority and has an unpredictable behaviour. These features involve a cooperation challenge that has been addressed in previous proposals with methods based on virtual currencies. In this work, those methods have been simulated in NS-2 and the results have been analyzed, showing several weaknesses. In particular, it has been concluded that existent methods do not provide significant advances compared with networks without any mechanism for promoting cooperation. Consequently, this work presents three new proposals that try to solve those problems. The obtained results show that the new proposals offer significant improvements over previous schemes based on virtual currencies
    corecore