66 research outputs found

    Cycle Time Analysis For Photolithography Tools In Semiconductor Manufacturing Industry With Simulation Model : A Case Study [TR940. S618 2008 f rb].

    Get PDF
    Perkembangan industri semikonduktor dalam bidang fabrikasi biasanya melibatkan kos pelaburan yang tinggi terutamanya dalam alatan photolithography. The industry of semiconductor wafer fabrication (“fab”) has invested a huge amount of capital on the manufacturing equipments particular in photolithograph

    Cycle Time Analysis For Photolithography Tools In Semiconductor Manufacturing Industry With Simulation Model: A Case Study

    Get PDF
    Perkembangan industri semikonduktor dalam bidang fabrikasi biasanya melibatkan kos pelaburan yang tinggi terutamanya dalam alatan photolithography. Perkembangan pesat dalam bidang industri semikonduktor kini telah memerangsangkan teknik untuk mengoptimumkan penggunaan mesin-mesin dengan efektif setelah membelanjakan beribu juta dalam perlaburan. Tanpa penggunaan perisian komputer yang canggih dalam analisis, adalah sukar untuk menggunakan teknik purba dalam analisis pengiraan apabila menghadapi perkembangan produk yang semakin tinggi teknologinya. Dalam kajian ini, satu model simulasi telah dibina untuk menganalisis masa mendulu dalam alatan photolithography melalui teknik yang lebih sistematik dan efektif. Model simulasi ini telah dibina berasaskan perisian computer yang memerlukan informasi yang teliti seperti mas a memproses dan juga aliran proses dalam alatan photolithography. The industry of semiconductor wafer fabrication ("fab") has invested a huge amount of capital on the manufacturing equipments particular in photolithography area which has driven the needs to re-look at the most profitable way of utilizing and operating them efficiently. Traditional industrial engineering analysis techniques through mathematical models or static models for the studies of photolithography process are simply not adequate to analyze these complex environments. In this research, a more realistic representation of photolithography tools that can give a better prediction results and a more systematic methodology for minimizing photolithography cycle time is presented. The proposed method is to reduce waiting time and increase utilization of the photolithography process, which would result in an overall equipment cycle time reduction

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Entwicklung und Einführung von Produktionssteuerungsverbesserungen für die kundenorientierte Halbleiterfertigung

    Get PDF
    Production control in a semiconductor production facility is a very complex and timeconsuming task. Different demands regarding facility performance parameters are defined by customer and facility management. These requirements are usually opponents, and an efficient strategy is not simple to define. In semiconductor manufacturing, the available production control systems often use priorities to define the importance of each production lot. The production lots are ranked according to the defined priorities. This process is called dispatching. The priority allocation is carried out by special algorithms. In literature, a huge variety of different strategies and rules is available. For the semiconductor foundry business, there is a need for a very flexible and adaptable policy taking the facility state and the defined requirements into account. At our case the production processes are characterized by a low-volume high-mix product portfolio. This portfolio causes additional stability problems and performance lags. The unstable characteristic increases the influence of reasonable production control logic. This thesis offers a very flexible and adaptable production control policy. This policy is based on a detailed facility model with real-life production data. The data is extracted from a real high-mix low-volume semiconductor facility. The dispatching strategy combines several dispatching rules. Different requirements like line balance, throughput optimization and on-time delivery targets can be taken into account. An automated detailed facility model calculates a semi-optimal combination of the different dispatching rules under a defined objective function. The objective function includes different demands from the management and the customer. The optimization is realized by a genetic heuristic for a fast and efficient finding of a close-to-optimal solution. The strategy is evaluated with real-life production data. The analysis with the detailed facility model of this fab shows an average improvement of 5% to 8% for several facility performance parameters like cycle time per mask layer. Finally the approach is realized and applied at a typical high-mix low-volume semiconductor facility. The system realization bases on a JAVA implementation. This implementation includes common state-of-the-art technologies such as web services. The system replaces the older production control solution. Besides the dispatching algorithm, the production policy includes the possibility to skip several metrology operations under defined boundary conditions. In a real-life production process, not all metrology operations are necessary for each lot. The thesis evaluates the influence of the sampling mechanism to the production process. The solution is included into the system implementation as a framework to assign different sampling rules to different metrology operations. Evaluations show greater improvements at bottleneck situations. After the productive introduction and usage of both systems, the practical results are evaluated. The staff survey offers good acceptance and response to the system. Furthermore positive effects on the performance measures are visible. The implemented system became part of the daily tools of a real semiconductor facility.Produktionssteuerung im Bereich der kundenorientierten Halbleiterfertigung ist heutzutage eine sehr komplexe und zeitintensive Aufgabe. Verschiedene Anforderungen bezüglich der Fabrikperformance werden seitens der Kunden als auch des Fabrikmanagements definiert. Diese Anforderungen stehen oftmals in Konkurrenz. Dadurch ist eine effiziente Strategie zur Kompromissfindung nicht einfach zu definieren. Heutige Halbleiterfabriken mit ihren verfügbaren Produktionssteuerungssystemen nutzen oft prioritätsbasierte Lösungen zur Definition der Wichtigkeit eines jeden Produktionsloses. Anhand dieser Prioritäten werden die Produktionslose sortiert und bearbeitet. In der Literatur existiert eine große Bandbreite verschiedener Algorithmen. Im Bereich der kundenorientierten Halbleiterfertigung wird eine sehr flexible und anpassbare Strategie benötigt, die auch den aktuellen Fabrikzustand als auch die wechselnden Kundenanforderungen berücksichtigt. Dies gilt insbesondere für den hochvariablen geringvolumigen Produktionsfall. Diese Arbeit behandelt eine flexible Strategie für den hochvariablen Produktionsfall einer solchen Produktionsstätte. Der Algorithmus basiert auf einem detaillierten Fabriksimulationsmodell mit Rückgriff auf Realdaten. Neben synthetischen Testdaten wurde der Algorithmus auch anhand einer realen Fertigungsumgebung geprüft. Verschiedene Steuerungsregeln werden hierbei sinnvoll kombiniert und gewichtet. Wechselnde Anforderungen wie Linienbalance, Durchsatz oder Liefertermintreue können adressiert und optimiert werden. Mittels einer definierten Zielfunktion erlaubt die automatische Modellgenerierung eine Optimierung anhand des aktuellen Fabrikzustandes. Die Optimierung basiert auf einen genetischen Algorithmus für eine flexible und effiziente Lösungssuche. Die Strategie wurde mit Realdaten aus der Fertigung einer typischen hochvariablen geringvolumigen Halbleiterfertigung geprüft und analysiert. Die Analyse zeigt ein Verbesserungspotential von 5% bis 8% für die bekannten Performancekriterien wie Cycletime im Vergleich zu gewöhnlichen statischen Steuerungspolitiken. Eine prototypische Implementierung realisiert diesen Ansatz zur Nutzung in der realen Fabrikumgebung. Die Implementierung basiert auf der JAVA-Programmiersprache. Aktuelle Implementierungsmethoden erlauben den flexiblen Einsatz in der Produktionsumgebung. Neben der Fabriksteuerung wurde die Möglichkeit der Reduktion von Messoperationszeit (auch bekannt unter Sampling) unter gegebenen Randbedingungen einer hochvariablen geringvolumigen Fertigung untersucht und geprüft. Oftmals ist aufgrund stabiler Prozesse in der Fertigung die Messung aller Lose an einem bestimmten Produktionsschritt nicht notwendig. Diese Arbeit untersucht den Einfluss dieses gängigen Verfahrens aus der Massenfertigung für die spezielle geringvolumige Produktionsumgebung. Die Analysen zeigen insbesondere in Ausnahmesituationen wie Anlagenausfällen und Kapazitätsengpässe einen positiven Effekt, während der Einfluss unter normalen Produktionsbedingungen aufgrund der hohen Produktvariabilität als gering angesehen werden kann. Nach produktiver Einführung in einem typischen Vertreter dieser Halbleiterfabriken zeigten sich schnell positive Effekte auf die Fabrikperformance als auch eine breite Nutzerakzeptanz. Das implementierte System wurde Bestandteil der täglichen genutzten Werkzeuglandschaft an diesem Standort

    Improving equipment performance through queueing model applications

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Sloan School of Management, 1995, and Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Vita.Includes bibliographical references (p. 73-74).by Michael J. Capelle.M.S

    Intelligent shop scheduling for semiconductor manufacturing

    Get PDF
    Semiconductor market sales have expanded massively to more than 200 billion dollars annually accompanied by increased pressure on the manufacturers to provide higher quality products at lower cost to remain competitive. Scheduling of semiconductor manufacturing is one of the keys to increasing productivity, however the complexity of manufacturing high capacity semiconductor devices and the cost considerations mean that it is impossible to experiment within the facility. There is an immense need for effective decision support models, characterizing and analyzing the manufacturing process, allowing the effect of changes in the production environment to be predicted in order to increase utilization and enhance system performance. Although many simulation models have been developed within semiconductor manufacturing very little research on the simulation of the photolithography process has been reported even though semiconductor manufacturers have recognized that the scheduling of photolithography is one of the most important and challenging tasks due to complex nature of the process. Traditional scheduling techniques and existing approaches show some benefits for solving small and medium sized, straightforward scheduling problems. However, they have had limited success in solving complex scheduling problems with stochastic elements in an economic timeframe. This thesis presents a new methodology combining advanced solution approaches such as simulation, artificial intelligence, system modeling and Taguchi methods, to schedule a photolithography toolset. A new structured approach was developed to effectively support building the simulation models. A single tool and complete toolset model were developed using this approach and shown to have less than 4% deviation from actual production values. The use of an intelligent scheduling agent for the toolset model shows an average of 15% improvement in simulated throughput time and is currently in use for scheduling the photolithography toolset in a manufacturing plant

    A framework for generating operational characteristic curves for semiconductor manufacturing systems using flexible and reusable discrete event simulations

    Get PDF
    This thesis proposes a framework for generating operating curves for semiconductor manufacturing facilities using a modular flexible discrete event simulation (DES) model embedded in an application that automates the design of experiments for the simulations. Typically, operating curves are generated using analytical queueing models that are difficult to implement and hence, can only be used for benchmarking purposes. Alternatively, DES models are more capable of capturing the complexities of a semiconductor manufacturing facility such as re-entrancy, rework and non-identical toolsets. However, traditional craft-based simulations require much time and resources. The proposed methodology aims to reduce this time by automatically calculating the parameters for experimentation and generating the simulation model. It proposes a novel method to more appropriately allocate simulation effort by selecting design points more relevant to the operating curve. The methodology was initially applied to a single toolset model and tested as a pilot case study using actual factory data. Overall, the resulting operating curves matched that of the actual data. Subsequently, the methodology was applied to a full semiconductor manufacturing facility, using datasets from the Semiconductor Wafer Manufacturing Data Format Specification. The automated framework was shown to generate the curves rapidly and comparisons against a number of queueing model equivalents showed that the DES curves were more accurate. The implications of this work mean that on deployment of the application, semiconductor manufacturers can quickly obtain an accurate operating curve of their factory that could be used to aid in capacity planning and enable better decision-making regarding allocation of resources

    Ordonnancement et contrôle avancé des procédés en fabrication de semi-conducteurs.

    Get PDF
    Dans cette thèse, nous avons examiné différentes possibilités d'intégration des décisions d'ordonnancement avec des informations provenant de systèmes avancés des contrôles des procédés dans la fabrication de semi-conducteurs. Nous avons développé des idées d'intégration et défini des nouveaux problèmes d'ordonnancement originales : Problème d'ordonnancement avec des contraintes de temps (PTC) et problème d'ordonnancement avec l'état de santé des équipement (PEHF). PTC et PEHF ont des fonctions objectives multicritères.PTC est un problème d'ordonnancement des familles de jobs sur des machines parallèles non identiques en tenant compte des temps de setup et des contraintes de temps. Les machines non identiques signifient que toutes les machines ne peuvent pas traités (qualifiés) tous les types de familles d'emplois. Les contraintes de temps nommés aussi Thresholds sont inspirées des besoins de l'APC. Elle est liée à l'alimentation régulière des boucles de contrôle de l'APC. L'objectif est de minimiser la somme des dates de fin et les pertes de qualification des machines lorsqu'une famille de jobs n'est pas ordonnancée sur la machine donnée avant un seuil de temps donné.D'autre part, PEHF est une extension de PTC. Il consiste d'intégrer les indices de santé des équipements (EHF). EHF est un indicateur associé à l'équipement qui donne l'état de la. L'objectif est d'ordonnancer des tâches de familles de jobs différents sur les machines tout en minimisant la somme des temps d'achèvement, les pertes de qualification de la machine et d'optimiser un rendement attendu. Ce rendement est défini comme une fonction d'EDH et de la criticité de jobs considérés.In this thesis, we discussed various possibilities of integrating scheduling decisions with information and constraints from Advanced Process Control (APC) systems in semiconductor Manufacturing. In this context, important questions were opened regarding the benefits of integrating scheduling and APC. An overview on processes, scheduling and Advanced Process Control in semiconductor manufacturing was done, where a description of semiconductor manufacturing processes is given. Two of the proposed problems that result from integrating bith systems were studied and analyzed, they are :Problem of Scheduling with Time Constraints (PTC) and Problem of Scheduling with Equipement health Factor (PEHF). PTC and PEHF have multicriteria objective functions.PTC aims at scheduling job in families on non-identical parallel machines with setup times and time constraints.Non-identical machines mean that not all miachines can (are qualified to) process all types of job families. Time constraints are inspired from APC needs, for which APC control loops must be regularly fed with information from metrology operations (inspection) within a time interval (threshold). The objective is to schedule job families on machines while minimizing the sum of completion times and the losses in machine qualifications.Moreover, PEHF was defined which is an extension of PTC where scheduling takes into account the equipement Health Factors (EHF). EHF is an indicator on the state of a machine. Scheduling is now done by considering a yield resulting from an assignment of a job to a machine and this yield is defined as a function of machine state and job state.ST ETIENNE-ENS des Mines (422182304) / SudocGARDANNE-Centre microélec. (130412301) / SudocSudocFranceF
    corecore