16,821 research outputs found

    A Density-Based General Greedy Channel Routing Algorithm in VLSI Design Automation.

    Get PDF
    One of the most important forms of routing strategies is called channel routing . This approach allows us to reduce the extremely difficult VLSI layout problem to a collection of simpler subproblems. For channel routing problems, most frequently mentioned heuristic algorithms use parameters derived from experiments to approach the routing solution without carefully considering the effect of each selected wire segment to the final routing solution. In this dissertation, we propose a new channel routing algorithm in the two-layer restricted-Manhattan routing model (2-RM) in detail. There are three phases involved in developing the new routing algorithm. In the first phase, we distinguish one type of wire from the others using some optimality criteria, which makes the selection of a set of best horizontal wire segments for a track more effective so that good performance of the generated routing solutions can be achieved. In the second phase, we develop a theoretical framework related to two major data structures, column density and vertical constraint graph, which effectively improves search efficiency and routing performance. Finally in the third phase, we develop an efficient powerful heuristic channel routing algorithm based on the concepts shown in phase one and the theoretical framework proposed in phase two. We highlight the application of our algorithm to the channel routing problems in the three-layer restricted-Manhattan overlap (3-RM-O) and three-layer Manhattan overlay (3-M-O) routing models. On many tests we have conducted on the examples known in the literature, our algorithm has performed as well or better than the existing algorithms in both 2-RM and 3-M-O routing models. Our experiments show that our approach has the potential to outperform other algorithms in other routing models

    Application-Aware Deadlock-Free Oblivious Routing

    Get PDF
    Conventional oblivious routing algorithms are either not application-aware or assume that each flow has its own private channel to ensure deadlock avoidance. We present a framework for application-aware routing that assures deadlock-freedom under one or more channels by forcing routes to conform to an acyclic channel dependence graph. Arbitrary minimal routes can be made deadlock-free through appropriate static channel allocation when two or more channels are available. Given bandwidth estimates for flows, we present a mixed integer-linear programming (MILP) approach and a heuristic approach for producing deadlock-free routes that minimize maximum channel load. The heuristic algorithm is calibrated using the MILP algorithm and evaluated on a number of benchmarks through detailed network simulation. Our framework can be used to produce application-aware routes that target the minimization of latency, number of flows through a link, bandwidth, or any combination thereof

    Application-Aware Deadlock-Free Oblivious Routing

    Get PDF
    Conventional oblivious routing algorithms are either not application-aware or assume that each flow has its own private channel to ensure deadlock avoidance. We present a framework for application-aware routing that assures deadlock-freedom under one or more channels by forcing routes to conform to an acyclic channel dependence graph. Arbitrary minimal routes can be made deadlock-free through appropriate static channel allocation when two or more channels are available. Given bandwidth estimates for flows, we present a mixed integer-linear programming (MILP) approach and a heuristic approach for producing deadlock-free routes that minimize maximum channel load. The heuristic algorithm is calibrated using the MILP algorithm and evaluated on a number of benchmarks through detailed network simulation. Our framework can be used to produce application-aware routes that target the minimization of latency, number of flows through a link, bandwidth, or any combination thereof

    Multiflow Transmission in Delay Constrained Cooperative Wireless Networks

    Full text link
    This paper considers the problem of energy-efficient transmission in multi-flow multihop cooperative wireless networks. Although the performance gains of cooperative approaches are well known, the combinatorial nature of these schemes makes it difficult to design efficient polynomial-time algorithms for joint routing, scheduling and power control. This becomes more so when there is more than one flow in the network. It has been conjectured by many authors, in the literature, that the multiflow problem in cooperative networks is an NP-hard problem. In this paper, we formulate the problem, as a combinatorial optimization problem, for a general setting of kk-flows, and formally prove that the problem is not only NP-hard but it is o(n1/7−ϵ)o(n^{1/7-\epsilon}) inapproxmiable. To our knowledge*, these results provide the first such inapproxmiablity proof in the context of multiflow cooperative wireless networks. We further prove that for a special case of k = 1 the solution is a simple path, and devise a polynomial time algorithm for jointly optimizing routing, scheduling and power control. We then use this algorithm to establish analytical upper and lower bounds for the optimal performance for the general case of kk flows. Furthermore, we propose a polynomial time heuristic for calculating the solution for the general case and evaluate the performance of this heuristic under different channel conditions and against the analytical upper and lower bounds.Comment: 9 pages, 5 figure

    A cross-layer heuristic algorithm for addressing shadowing problem in optical attocell networks

    Get PDF
    The performance of visible light communication (VLC)-based optical attocell networks degrades due to shadowing caused by opaque objects. In order to improve reliability, we propose a cross-layer algorithm to find the optimal routing and resource allocation schemes when shadowing occurs. Simulation results show that the optimal scheme found by the proposed algorithm significantly improves the performance of optical attocell networks with one randomly shadowed link

    Unidirectional Quorum-based Cycle Planning for Efficient Resource Utilization and Fault-Tolerance

    Full text link
    In this paper, we propose a greedy cycle direction heuristic to improve the generalized R\mathbf{R} redundancy quorum cycle technique. When applied using only single cycles rather than the standard paired cycles, the generalized R\mathbf{R} redundancy technique has been shown to almost halve the necessary light-trail resources in the network. Our greedy heuristic improves this cycle-based routing technique's fault-tolerance and dependability. For efficiency and distributed control, it is common in distributed systems and algorithms to group nodes into intersecting sets referred to as quorum sets. Optimal communication quorum sets forming optical cycles based on light-trails have been shown to flexibly and efficiently route both point-to-point and multipoint-to-multipoint traffic requests. Commonly cycle routing techniques will use pairs of cycles to achieve both routing and fault-tolerance, which uses substantial resources and creates the potential for underutilization. Instead, we use a single cycle and intentionally utilize R\mathbf{R} redundancy within the quorum cycles such that every point-to-point communication pairs occur in at least R\mathbf{R} cycles. Without the paired cycles the direction of the quorum cycles becomes critical to the fault tolerance performance. For this we developed a greedy cycle direction heuristic and our single fault network simulations show a reduction of missing pairs by greater than 30%, which translates to significant improvements in fault coverage.Comment: Computer Communication and Networks (ICCCN), 2016 25th International Conference on. arXiv admin note: substantial text overlap with arXiv:1608.05172, arXiv:1608.05168, arXiv:1608.0517

    A novel cooperative opportunistic routing scheme for underwater sensor networks

    Get PDF
    Increasing attention has recently been devoted to underwater sensor networks (UWSNs) because of their capabilities in the ocean monitoring and resource discovery. UWSNs are faced with different challenges, the most notable of which is perhaps how to efficiently deliver packets taking into account all of the constraints of the available acoustic communication channel. The opportunistic routing provides a reliable solution with the aid of intermediate nodes’ collaboration to relay a packet toward the destination. In this paper, we propose a new routing protocol, called opportunistic void avoidance routing (OVAR), to address the void problem and also the energy-reliability trade-off in the forwarding set selection. OVAR takes advantage of distributed beaconing, constructs the adjacency graph at each hop and selects a forwarding set that holds the best trade-off between reliability and energy efficiency. The unique features of OVAR in selecting the candidate nodes in the vicinity of each other leads to the resolution of the hidden node problem. OVAR is also able to select the forwarding set in any direction from the sender, which increases its flexibility to bypass any kind of void area with the minimum deviation from the optimal path. The results of our extensive simulation study show that OVAR outperforms other protocols in terms of the packet delivery ratio, energy consumption, end-to-end delay, hop count and traversed distance
    • …
    corecore