15,904 research outputs found

    Cut Size Statistics of Graph Bisection Heuristics

    Full text link
    We investigate the statistical properties of cut sizes generated by heuristic algorithms which solve approximately the graph bisection problem. On an ensemble of sparse random graphs, we find empirically that the distribution of the cut sizes found by ``local'' algorithms becomes peaked as the number of vertices in the graphs becomes large. Evidence is given that this distribution tends towards a Gaussian whose mean and variance scales linearly with the number of vertices of the graphs. Given the distribution of cut sizes associated with each heuristic, we provide a ranking procedure which takes into account both the quality of the solutions and the speed of the algorithms. This procedure is demonstrated for a selection of local graph bisection heuristics.Comment: 17 pages, 5 figures, submitted to SIAM Journal on Optimization also available at http://ipnweb.in2p3.fr/~martin

    Dynamics of heuristic optimization algorithms on random graphs

    Full text link
    In this paper, the dynamics of heuristic algorithms for constructing small vertex covers (or independent sets) of finite-connectivity random graphs is analysed. In every algorithmic step, a vertex is chosen with respect to its vertex degree. This vertex, and some environment of it, is covered and removed from the graph. This graph reduction process can be described as a Markovian dynamics in the space of random graphs of arbitrary degree distribution. We discuss some solvable cases, including algorithms already analysed using different techniques, and develop approximation schemes for more complicated cases. The approximations are corroborated by numerical simulations.Comment: 19 pages, 3 figures, version to app. in EPJ

    Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications (Extended Version)

    Get PDF
    Although the ``scale-free'' literature is large and growing, it gives neither a precise definition of scale-free graphs nor rigorous proofs of many of their claimed properties. In fact, it is easily shown that the existing theory has many inherent contradictions and verifiably false claims. In this paper, we propose a new, mathematically precise, and structural definition of the extent to which a graph is scale-free, and prove a series of results that recover many of the claimed properties while suggesting the potential for a rich and interesting theory. With this definition, scale-free (or its opposite, scale-rich) is closely related to other structural graph properties such as various notions of self-similarity (or respectively, self-dissimilarity). Scale-free graphs are also shown to be the likely outcome of random construction processes, consistent with the heuristic definitions implicit in existing random graph approaches. Our approach clarifies much of the confusion surrounding the sensational qualitative claims in the scale-free literature, and offers rigorous and quantitative alternatives.Comment: 44 pages, 16 figures. The primary version is to appear in Internet Mathematics (2005

    Minimal vertex covers on finite-connectivity random graphs - a hard-sphere lattice-gas picture

    Full text link
    The minimal vertex-cover (or maximal independent-set) problem is studied on random graphs of finite connectivity. Analytical results are obtained by a mapping to a lattice gas of hard spheres of (chemical) radius one, and they are found to be in excellent agreement with numerical simulations. We give a detailed description of the replica-symmetric phase, including the size and the entropy of the minimal vertex covers, and the structure of the unfrozen component which is found to percolate at connectivity c≃1.43c\simeq 1.43. The replica-symmetric solution breaks down at c=e≃2.72c=e\simeq 2.72. We give a simple one-step replica symmetry broken solution, and discuss the problems in interpretation and generalization of this solution.Comment: 32 pages, 9 eps figures, to app. in PRE (01 May 2001

    An Atypical Survey of Typical-Case Heuristic Algorithms

    Full text link
    Heuristic approaches often do so well that they seem to pretty much always give the right answer. How close can heuristic algorithms get to always giving the right answer, without inducing seismic complexity-theoretic consequences? This article first discusses how a series of results by Berman, Buhrman, Hartmanis, Homer, Longpr\'{e}, Ogiwara, Sch\"{o}ening, and Watanabe, from the early 1970s through the early 1990s, explicitly or implicitly limited how well heuristic algorithms can do on NP-hard problems. In particular, many desirable levels of heuristic success cannot be obtained unless severe, highly unlikely complexity class collapses occur. Second, we survey work initiated by Goldreich and Wigderson, who showed how under plausible assumptions deterministic heuristics for randomized computation can achieve a very high frequency of correctness. Finally, we consider formal ways in which theory can help explain the effectiveness of heuristics that solve NP-hard problems in practice.Comment: This article is currently scheduled to appear in the December 2012 issue of SIGACT New

    Reduction of Dilute Ising Spin Glasses

    Full text link
    The recently proposed reduction method for diluted spin glasses is investigated in depth. In particular, the Edwards-Anderson model with \pm J and Gaussian bond disorder on hyper-cubic lattices in d=2, 3, and 4 is studied for a range of bond dilutions. The results demonstrate the effectiveness of using bond dilution to elucidate low-temperature properties of Ising spin glasses, and provide a starting point to enhance the methods used in reduction. Based on that, a greedy heuristic call ``Dominant Bond Reduction'' is introduced and explored.Comment: 10 pages, revtex, final version, find related material at http://www.physics.emory.edu/faculty/boettcher
    • …
    corecore