9,880 research outputs found

    The crew-scheduling module in the GIST system

    Get PDF
    The public transportation is gaining importance every year basically due the population growth, environmental policies and, route and street congestion. Too able an efficient management of all the resources related to public transportation, several techniques from different areas are being applied and several projects in Transportation Planning Systems, in different countries, are being developed. In this work, we present the GIST Planning Transportation Systems, a Portuguese project involving two universities and six public transportation companies. We describe in detail one of the most relevant modules of this project, the crew-scheduling module. The crew-scheduling module is based on the application of meta-heuristics, in particular GRASP, tabu search and genetic algorithm to solve the bus-driver-scheduling problem. The metaheuristics have been successfully incorporated in the GIST Planning Transportation Systems and are actually used by several companies.Integrated transportation systems, crew scheduling, metaheuristics

    Vehicle Routing with Traffic Congestion and Drivers' Driving and Working Rules

    Get PDF
    For the intensively studied vehicle routing problem (VRP), two real-life restrictions have received only minor attention in the VRP-literature: traffic congestion and driving hours regulations. Traffic congestion causes late arrivals at customers and long travel times resulting in large transport costs. To account for traffic congestion, time-dependent travel times should be considered when constructing vehicle routes. Next, driving hours regulations, which restrict the available driving and working times for truck drivers, must be respected. Since violations are severely fined, also driving hours regulations should be considered when constructing vehicle routes, even more in combination with congestion problems. The objective of this paper is to develop a solution method for the VRP with time windows (VRPTW), time-dependent travel times, and driving hours regulations. The major difficulty of this VRPTW extension is to optimize each vehicle’s departure times to minimize the duty time of each driver. Having compact duty times leads to cost savings. However, obtaining compact duty times is much harder when time-dependent travel times and driving hours regulations are considered. We propose a restricted dynamic programming (DP) heuristic for constructing the vehicles routes, and an efficient heuristic for optimizing the vehicle’s departure times for each (partial) vehicle route, such that the complete solution algorithm runs in polynomial time. Computational experiments emonstrate the trade-off between travel distance minimization and duty time minimization, and illustrate the cost savings of extending the depot opening hours such that traveling before the morning peak and after the evening peak becomes possible

    Dynamic approach to solve the daily drayage problem with travel time uncertainty

    Get PDF
    The intermodal transport chain can become more e cient by means of a good organization of drayage movements. Drayage in intermodal container terminals involves the pick up and delivery of containers at customer locations, and the main objective is normally the assignment of transportation tasks to the di erent vehicles, often with the presence of time windows. This scheduling has traditionally been done once a day and, under these conditions, any unexpected event could cause timetable delays. We propose to use the real-time knowledge about vehicle position to solve this problem, which permanently allows the planner to reassign tasks in case the problem conditions change. This exact knowledge of the position of the vehicles is possible using a geographic positioning system by satellite (GPS, Galileo, Glonass), and the results show that this additional data can be used to dynamically improve the solution

    Enriching the tactical network design of express service carriers with fleet scheduling characteristics

    Get PDF
    Express service carriers provide time-guaranteed deliveries of parcels via a network consisting of nodes and hubs. In this, nodes take care of the collection and delivery of parcels, and hubs have the function to consolidate parcels in between the nodes. The tactical network design problem assigns nodes to hubs, determines arcs between hubs, and routes parcels through the network. Afterwards, fleet scheduling creates a schedule for vehicles operated in the network. The strong relation between flow routing and fleet scheduling makes it difficult to optimise the network cost. Due to this complexity, fleet scheduling and network design are usually decoupled. We propose a new tactical network design model that is able to include fleet scheduling characteristics (like vehicle capacities, vehicle balancing, and drivers' legislations) in the network design. The model is tested on benchmark data based on instances from an express provider, resulting in significant cost reductions

    A satellite navigation system to improve the management of intermodal drayage

    Get PDF
    The intermodal transport chain can become more efficient by means of a good organization of the drayage movements. Drayage in intermodal container terminals involves the pick up or delivery of containers at customer locations, and the main objective is normally the assignment of transportation tasks to the different vehicles, often with the presence of time windows. The literature shows some works on centralised drayage management, but most of them consider the problem only from a static and deterministic perspective, whereas the work we present here incorporates the knowledge of the real-time position of the vehicles, which permanently enables the planner to reassign tasks in case the problem conditions change. This exact knowledge of position of the vehicles is possible thanks to a geographic positioning system by satellite (GPS, Galileo, Glonass), and the results show that this additional data can be used to dynamically improve the solution

    A solution approach for dynamic vehicle and crew scheduling

    Get PDF
    In this paper, we discuss the dynamic vehicle and crew schedulingproblem and we propose a solution approach consisting of solving asequence of optimization problems. Furthermore, we explain why itis useful to consider such a dynamic approach and compare it witha static one. Moreover, we perform a sensitivity analysis on ourmain assumption that the travel times of the trips are knownexactly a certain amount of time before actual operation.We provide extensive computational results on some real-world datainstances of a large public transport company in the Netherlands.Due to the complexity of the vehicle and crew scheduling problem,we solve only small and medium-sized instances with such a dynamicapproach. We show that the results are good in the case of asingle depot. However, in the multiple-depot case, the dynamicapproach does not perform so well. We investigate why this is thecase and conclude that the fact that the instance has to be splitin several smaller ones, has a negative effect on the performance.transportation;vehicle and crew scheduling;large-scale optimization;dynamic planning

    Analyzing combined vehicle routing and break scheduling from a distributed decision making perspective

    Get PDF
    We analyze the problem of combined vehicle routing and break scheduling from a distributed decision making perspective. The problem of combined vehicle routing and break scheduling can be defined as the problem of finding vehicle routes to serve a set of customers such that a cost criterion is minimized and legal rules on driving and working hours are observed. In the literature, this problem is always analyzed from a central planning perspective. In practice, however, this problem is solved interactively between planners and drivers. In\ud many practical scenarios, the planner first clusters the customer requests and instructs the drivers which customers they have to visit. Subsequently, the drivers decide upon the routes to be taken and their break schedules. We apply a framework for distributed decision making to model this planning scenario and propose various ways for planners to anticipate the drivers' planning behavior. Especially in the case of antagonistic objectives, which are often encountered in practice, a distributed decision making perspective is necessary to analyze this planning process. Computational experiments demonstrate that a high degree of anticipation by the planner has a strong positive impact on the overall planning quality, especially in the case of conflicting planner's and drivers' objectives
    corecore