87 research outputs found

    A novel nomadic people optimizer-based energy-efficient routing for WBAN

    Get PDF
    In response to user demand for wearable devices, several WBAN deployments now call for effective communication processes for remote data monitoring in real time. Using sensor networks, intelligent wearable devices have exchanged data that has benefited in the evaluation of possible security hazards. If smart wearables in sensor networks use an excessive amount of power during data transmission, both network lifetime and data transmission performance may suffer. Despite the network's effective data transmission, smart wearable patches include data that has been combined from several sources utilizing common aggregators. Data analysis requires careful network lifespan control throughout the aggregation phase. By using the Nomadic People Optimizer-based Energy-Efficient Routing (NPO-EER) approach, which effectively allows smart wearable patches by minimizing data aggregation time and eliminating routing loops, the network lifetime has been preserved in this research. The obtained findings showed that the NPO method had a great solution. Estimated Aggregation time, Energy consumption, Delay, and throughput have all been shown to be accurate indicators of the system's performance

    A Centralized Cluster-Based Hierarchical Approach for Green Communication in a Smart Healthcare System

    Full text link
    The emergence of the Internet of Things (IoT) has revolutionized our digital and virtual worlds of connected devices. IoT is a key enabler for a wide range of applications in today's world. For example, in smart healthcare systems, the sensor-embedded devices monitor various vital signs of the patients. These devices operate on small batteries, and their energy need to be utilized efficiently. The need for green IoT to preserve the energy of these devices has never been more critical than today. The existing smart healthcare approaches adopt a heuristic approach for energy conservation by minimizing the duty-cycling of the underlying devices. However, they face numerous challenges in terms of excessive overhead, idle listening, overhearing, and collision. To circumvent these challenges, we have proposed a cluster-based hierarchical approach for monitoring the patients in an energy-efficient manner, i.e., green communication. The proposed approach organizes the monitoring devices into clusters of equal sizes. Within each cluster, a cluster head is designated to gather data from its member devices and broadcast to a centralized base station. Our proposed approach models the energy consumption of each device in various states, i.e., idle, sleep, awake, and active, and also performs the transitions between these states. We adopted an analytical approach for modeling the role of each device and its energy consumption in various states. Extensive simulations were conducted to validate our analytical approach by comparing it against the existing schemes. The experimental results of our approach enhance the network lifetime with a reduced energy consumption during various states. Moreover, it delivers a better quality of data for decision making on the patient's vital signs

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Energy efficiency considerations in software‐defined wireless body area networks

    Get PDF
    Wireless body area networks (WBAN) provide remote services for patient monitoring which allows healthcare practitioners to diagnose, monitor, and prescribe them without their physical presence. To address the shortcomings of WBAN, software-defined networking (SDN) is regarded as an effective approach in this prototype. However, integrating SDN into WBAN presents several challenges in terms of safe data exchange, architectural framework, and resource efficiency. Because energy expenses account for a considerable portion of network expenditures, energy efficiency has to turn out to be a crucial design criterion for modern networking methods. However, creating energy-efficient systems is difficult because they must balance energy efficiency with network performance. In this article, the energy efficiency features are discussed that can widely be used in the software-defined wireless body area network (SDWBAN). A comprehensive survey has been carried out for various modern energy efficiency models based on routing algorithms, optimization models, secure data delivery, and traffic management. A comparative assessment of all the models has also been carried out for various parameters. Furthermore, we explore important concerns and future work in SDWBAN energy efficiency

    Game-Theoretic Relay Selection and Power Control in Fading Wireless Body Area Networks

    Get PDF
    The trend towards personalized ubiquitous computing has led to the advent of a new generation of wireless technologies, namely wireless body area networks (WBANs), which connect the wearable devices into the Internet-of-Things. This thesis considers the problems of relay selection and power control in fading WBANs with energy-efficiency and security considerations. The main body of the thesis is formed by two papers. Ideas from probability theory are used, in the first paper, to construct a performance measure signifying the energy efficiency of transmission, while in the second paper, information-theoretic principles are leveraged to characterize the transmission secrecy at the wireless physical layer (PHY). The hypothesis is that exploiting spatial diversity through multi-hop relaying is an effective strategy in a WBAN to combat fading and enhance communication throughput. In order to analytically explore the problems of optimal relay selection and power control, proper tools from game theory are employed. In particular, non-cooperative game-theoretic frameworks are developed to model and analyze the strategic interactions among sensor nodes in a WBAN when seeking to optimize their transmissions in the uplink. Quality-of-service requirements are also incorporated into the game frameworks, in terms of upper bounds on the end-to-end delay and jitter incurred by multi-hop transmission, by borrowing relevant tools from queuing theory. The proposed game frameworks are proved to admit Nash equilibria, and distributed algorithms are devised that converge to stable Nash solutions. The frameworks are then evaluated using numerical simulations in conditions approximating actual deployment of WBANs. Performance behavior trade-offs are investigated in an IEEE 802.15.6-based ultra wideband WBAN considering various scenarios. The frameworks show remarkable promise in improving the energy efficiency and PHY secrecy of transmission, at the expense of an admissible increase in the end-to-end latency

    A two-stage game theoretical approach for interference mitigation in Body-to-Body Networks

    Get PDF
    International audienceIn this paper, we identify and exploit opportunities for cooperation between a group of mobile Wireless Body Area Networks (WBANs), forming a Body-to-Body Network (BBN), through inter-body interference detection and subsequent mitigation. Thus, we consider a dynamic system composed of several BBNs and we analyze the joint mutual and cross-technology interference problem due to the utilization of a limited number of channels by different transmission technologies (i.e., ZigBee and WiFi) sharing the same radio spectrum. To this end, we propose a game theoretical approach to address the problem of Socially-aware Interference Mitigation (SIM) in BBNs, where WBANs are " social " and interact with each other. Our approach considers a two-stage channel allocation scheme: a BBN-stage for inter-WBANs' communications and a WBAN-stage for intra-WBAN communications. We demonstrate that the proposed BBN-stage and WBAN-stage games admit exact potential functions, and we develop a Best-Response (BR-SIM) algorithm that converges to Nash equilibrium points. A second algorithm, named Sub-Optimal Randomized Trials (SORT-SIM), is then proposed and compared to BR-SIM in terms of efficiency and computation time. We further compare the BR-SIM and SORT-SIM algorithms to two power control algorithms in terms of signal-to-interference ratio and aggregate interference, and show that they outperform the power control schemes in several cases. Numerical results, obtained in several realistic mobile scenarios, show that the proposed schemes are indeed efficient in optimizing the channel allocation in medium-to-large-scale BBNs

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Performance assessment of real-time data management on wireless sensor networks

    Get PDF
    Technological advances in recent years have allowed the maturity of Wireless Sensor Networks (WSNs), which aim at performing environmental monitoring and data collection. This sort of network is composed of hundreds, thousands or probably even millions of tiny smart computers known as wireless sensor nodes, which may be battery powered, equipped with sensors, a radio transceiver, a Central Processing Unit (CPU) and some memory. However due to the small size and the requirements of low-cost nodes, these sensor node resources such as processing power, storage and especially energy are very limited. Once the sensors perform their measurements from the environment, the problem of data storing and querying arises. In fact, the sensors have restricted storage capacity and the on-going interaction between sensors and environment results huge amounts of data. Techniques for data storage and query in WSN can be based on either external storage or local storage. The external storage, called warehousing approach, is a centralized system on which the data gathered by the sensors are periodically sent to a central database server where user queries are processed. The local storage, in the other hand called distributed approach, exploits the capabilities of sensors calculation and the sensors act as local databases. The data is stored in a central database server and in the devices themselves, enabling one to query both. The WSNs are used in a wide variety of applications, which may perform certain operations on collected sensor data. However, for certain applications, such as real-time applications, the sensor data must closely reflect the current state of the targeted environment. However, the environment changes constantly and the data is collected in discreet moments of time. As such, the collected data has a temporal validity, and as time advances, it becomes less accurate, until it does not reflect the state of the environment any longer. Thus, these applications must query and analyze the data in a bounded time in order to make decisions and to react efficiently, such as industrial automation, aviation, sensors network, and so on. In this context, the design of efficient real-time data management solutions is necessary to deal with both time constraints and energy consumption. This thesis studies the real-time data management techniques for WSNs. It particularly it focuses on the study of the challenges in handling real-time data storage and query for WSNs and on the efficient real-time data management solutions for WSNs. First, the main specifications of real-time data management are identified and the available real-time data management solutions for WSNs in the literature are presented. Secondly, in order to provide an energy-efficient real-time data management solution, the techniques used to manage data and queries in WSNs based on the distributed paradigm are deeply studied. In fact, many research works argue that the distributed approach is the most energy-efficient way of managing data and queries in WSNs, instead of performing the warehousing. In addition, this approach can provide quasi real-time query processing because the most current data will be retrieved from the network. Thirdly, based on these two studies and considering the complexity of developing, testing, and debugging this kind of complex system, a model for a simulation framework of the real-time databases management on WSN that uses a distributed approach and its implementation are proposed. This will help to explore various solutions of real-time database techniques on WSNs before deployment for economizing money and time. Moreover, one may improve the proposed model by adding the simulation of protocols or place part of this simulator on another available simulator. For validating the model, a case study considering real-time constraints as well as energy constraints is discussed. Fourth, a new architecture that combines statistical modeling techniques with the distributed approach and a query processing algorithm to optimize the real-time user query processing are proposed. This combination allows performing a query processing algorithm based on admission control that uses the error tolerance and the probabilistic confidence interval as admission parameters. The experiments based on real world data sets as well as synthetic data sets demonstrate that the proposed solution optimizes the real-time query processing to save more energy while meeting low latency.Fundação para a Ciência e Tecnologi

    Energy aware network coding in wireless networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 97-104).Energy is one of the most important considerations in designing reliable low-power wireless communication networks. We focus on the problem of energy aware network coding. In particular, we investigate practical energy efficient network code design for wireless body area networks (WBAN). We first consider converge-cast in a star-shaped topology, in which a central base station (BS), or hub, manages and communicates directly with a set of nodes. We then consider a wireless-relay channel, in which a relay node assists in the transmission of data from a source to a destination. This wireless relay channel can be seen as a simplified extended star network, where nodes have relay capabilities. The objective is to investigate the use of network coding in these scenarios, with the goal of achieving reliability under low-energy and lower-power constraints. More specifically, in a star network, we propose a simple network layer protocol, study the mean energy to complete uploads of given packets from the nodes to the BS using a Markov chain model, and show through numerical examples that when reception energy is taken into account, the incorporation of network coding offers reductions in energy use. The amount of achievable gains depends on the number of nodes in the network, the degree of asymmetry in channel conditions experienced by different nodes, and the relative difference between transmitting and receiving power at the nodes. We also demonstrate the compatibility of the proposed scheme with the IEEE 802.15.6 WBAN standard by describing ways of incorporating network coding into systems compliant to the standard. For a wireless relay channel, we explore the strategic use of network coding according to both throughput and energy metrics. In the relay channel, a single source communicates to a single sink through the aid of a half-duplex relay. The fluid flow model is used to describe the case where both the source and the relay are coding, and Markov chain models are proposed to describe packet evolution if only the source or only the relay is coding. Although we do not attempt to explicitly categorize the optimal network coding strategies in the relay channel under different system parameters, we provide a framework for deciding whether and where to code, taking into account of throughput maximization and energy depletion constraints.by Xiaomeng Shi.Ph.D
    corecore