23,416 research outputs found

    A new sequential covering strategy for inducing classification rules with ant colony algorithms

    Get PDF
    Ant colony optimization (ACO) algorithms have been successfully applied to discover a list of classification rules. In general, these algorithms follow a sequential covering strategy, where a single rule is discovered at each iteration of the algorithm in order to build a list of rules. The sequential covering strategy has the drawback of not coping with the problem of rule interaction, i.e., the outcome of a rule affects the rules that can be discovered subsequently since the search space is modified due to the removal of examples covered by previous rules. This paper proposes a new sequential covering strategy for ACO classification algorithms to mitigate the problem of rule interaction, where the order of the rules is implicitly encoded as pheromone values and the search is guided by the quality of a candidate list of rules. Our experiments using 18 publicly available data sets show that the predictive accuracy obtained by a new ACO classification algorithm implementing the proposed sequential covering strategy is statistically significantly higher than the predictive accuracy of state-of-the-art rule induction classification algorithms

    Self-adaptive heterogeneous random forest

    Get PDF

    A Heuristic Approach for Discovering Reference Models by Mining Process Model Variants

    Get PDF
    Recently, a new generation of adaptive Process-Aware Information Systems (PAISs) has emerged, which enables structural process changes during runtime while preserving PAIS robustness and consistency. Such flexibility, in turn, leads to a large number of process variants derived from the same model, but differing in structure. Generally, such variants are expensive to configure and maintain. This paper provides a heuristic search algorithm which fosters learning from past process changes by mining process variants. The algorithm discovers a reference model based on which the need for future process configuration and adaptation can be reduced. It additionally provides the flexibility to control the process evolution procedure, i.e., we can control to what degree the discovered reference model differs from the original one. As benefit, we can not only control the effort for updating the reference model, but also gain the flexibility to perform only the most important adaptations of the current reference model. Our mining algorithm is implemented and evaluated by a simulation using more than 7000 process models. Simulation results indicate strong performance and scalability of our algorithm even when facing large-sized process models

    An Efficient Genetic Algorithm for Discovering Diverse-Frequent Patterns

    Full text link
    Working with exhaustive search on large dataset is infeasible for several reasons. Recently, developed techniques that made pattern set mining feasible by a general solver with long execution time that supports heuristic search and are limited to small datasets only. In this paper, we investigate an approach which aims to find diverse set of patterns using genetic algorithm to mine diverse frequent patterns. We propose a fast heuristic search algorithm that outperforms state-of-the-art methods on a standard set of benchmarks and capable to produce satisfactory results within a short period of time. Our proposed algorithm uses a relative encoding scheme for the patterns and an effective twin removal technique to ensure diversity throughout the search.Comment: 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT

    On the Suitability of Genetic-Based Algorithms for Data Mining

    Get PDF
    Data mining has as goal to extract knowledge from large databases. A database may be considered as a search space consisting of an enormous number of elements, and a mining algorithm as a search strategy. In general, an exhaustive search of the space is infeasible. Therefore, efficient search strategies are of vital importance. Search strategies on genetic-based algorithms have been applied successfully in a wide range of applications. We focus on the suitability of genetic-based algorithms for data mining. We discuss the design and implementation of a genetic-based algorithm for data mining and illustrate its potentials
    corecore