84 research outputs found

    Canonical lossless state-space systems: Staircase forms and the Schur algorithm

    Get PDF
    A new finite atlas of overlapping balanced canonical forms for multivariate discrete-time lossless systems is presented. The canonical forms have the property that the controllability matrix is positive upper triangular up to a suitable permutation of its columns. This is a generalization of a similar balanced canonical form for continuous-time lossless systems. It is shown that this atlas is in fact a finite sub-atlas of the infinite atlas of overlapping balanced canonical forms for lossless systems that is associated with the tangential Schur algorithm; such canonical forms satisfy certain interpolation conditions on a corresponding sequence of lossless transfer matrices. The connection between these balanced canonical forms for lossless systems and the tangential Schur algorithm for lossless systems is a generalization of the same connection in the SISO case that was noted before. The results are directly applicable to obtain a finite sub-atlas of multivariate input-normal canonical forms for stable linear systems of given fixed order, which is minimal in the sense that no chart can be left out of the atlas without losing the property that the atlas covers the manifold

    FREQ: A computational package for multivariable system loop-shaping procedures

    Get PDF
    Many approaches in the field of linear, multivariable time-invariant systems analysis and controller synthesis employ loop-sharing procedures wherein design parameters are chosen to shape frequency-response singular value plots of selected transfer matrices. A software package, FREQ, is documented for computing within on unified framework many of the most used multivariable transfer matrices for both continuous and discrete systems. The matrices are evaluated at user-selected frequency-response values, and singular values against frequency. Example computations are presented to demonstrate the use of the FREQ code

    An adaptive-order rational Arnoldi method for model-order reductions of linear time-invariant systems

    Get PDF
    AbstractThis work proposes a model reduction method, the adaptive-order rational Arnoldi (AORA) method, to be applied to large-scale linear systems. It is based on an extension of the classical multi-point Padé approximation (or the so-called multi-point moment matching), using the rational Arnoldi iteration approach. Given a set of predetermined expansion points, an exact expression for the error between the output moment of the original system and that of the reduced-order system, related to each expansion point, is derived first. In each iteration of the proposed adaptive-order rational Arnoldi algorithm, the expansion frequency corresponding to the maximum output moment error will be chosen. Hence, the corresponding reduced-order model yields the greatest improvement in output moments among all reduced-order models of the same order. A detailed theoretical study is described. The proposed method is very appropriate for large-scale electronic systems, including VLSI interconnect models and digital filter designs. Several examples are considered to demonstrate the effectiveness and efficiency of the proposed method

    Balanced realizations of discrete-time stable all-pass systems and the tangential Schur algorithm

    Get PDF
    In this paper, the connections are investigated between two different approaches towards the parametrization of multivariable stable all-pass systems in discrete-time. The first approach involves the tangential Schur algorithm, which employs linear fractional transformations. It stems from the theory of reproducing kernel Hilbert spaces and enables the direct construction of overlapping local parametrizations using Schur parameters and interpolation points. The second approach proceeds in terms of state-space realizations. In the scalar case, a balanced canonical form exists that can also be parametrized by Schur parameters. This canonical form can be constructed recursively, using unitary matrix operations. Here, this procedure is generalized to the multivariable case by establishing the connections with the first approach. It gives rise to balanced realizations and overlapping canonical forms directly in terms of the parameters used in the tangential Schur algorithm

    Continuous-time lossless systems, boundary interpolation and pivot structures

    Get PDF
    International audienceBalanced realizations of lossless systems can be generated from the tangential Schur algorithm using linear fractional transformations. In discrete-time, canonical forms with pivot structures are obtained by interpolation at in finity. In continuous-time case interpolation at infi nity is on the stability boundary, leading to an angular derivative interpolation problem. In the scalar case, the balanced canonical form of Ober can be recovered in this way. Here we generalize to the multivariable case. It is shown that boundary interpolation can be regarded as a limit of classical interpolation with interpolation points tending to the imaginary axis. Some pivot structures can be generated, but no complete atlas is obtained. However, for input normal pairs an atlas of admissible pivot structures can be generated in a closely related way

    The identification of structural modal parameters, as an alternative in-vivo diagnosis for osteoporosis

    Get PDF
    Includes bibliographies.An alternative non-invasive diagnostic technique was sought for the diagnosis of osteoporosis in human subjects. The tibia vibration technique was proposed after reviewing the literature on detection techniques for osteoporosis. The basis of diagnosis of the tibia vibration technique is the measured resonant frequency of the patient's tibia. The patient's tibia is excited, generally by means of an impact hammer, while the response is captured and resonant frequencies extracted. This dissertation does not attempt to measure the resonant frequencies of a human tibia, but rather develop and validate the required experimental protocol and system identification procedures, on a simple test structure. A theoretical finite element model of the test structure was developed to ensure that both the experimental protocol and system identification procedures provided accurate results. The impulse response technique was adopted to excite the test structure

    Finite worldlength effects in fixed-point implementations of linear systems

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 173-194).by Vinay Mohta.M.Eng

    Rank Reduction with Convex Constraints

    Get PDF
    This thesis addresses problems which require low-rank solutions under convex constraints. In particular, the focus lies on model reduction of positive systems, as well as finite dimensional optimization problems that are convex, apart from a low-rank constraint. Traditional model reduction techniques try to minimize the error between the original and the reduced system. Typically, the resulting reduced models, however, no longer fulfill physically meaningful constraints. This thesis considers the problem of model reduction with internal and external positivity constraints. Both problems are solved by means of balanced truncation. While internal positivity is shown to be preserved by a symmetry property; external positivity preservation is accomplished by deriving a modified balancing approach based on ellipsoidal cone invariance.In essence, positivity preserving model reduction attempts to find an infinite dimensional low-rank approximation that preserves nonnegativity, as well as Hankel structure. Due to the non-convexity of the low-rank constraint, this problem is even challenging in a finite dimensional setting. In addition to model reduction, the present work also considers such finite dimensional low-rank optimization problems with convex constraints. These problems frequently appear in applications such as image compression, multivariate linear regression, matrix completion and many more. The main idea of this thesis is to derive the largest convex minorizers of rank-constrained unitarily invariant norms. These minorizers can be used to construct optimal convex relaxations for the original non-convex problem. Unlike other methods such as nuclear norm regularization, this approach benefits from having verifiable a posterior conditions for which a solution to the convex relaxation and the corresponding non-convex problem coincide. It is shown that this applies to various numerical examples of well-known low-rank optimization problems. In particular, the proposed convex relaxation performs significantly better than nuclear norm regularization. Moreover, it can be observed that a careful choice among the proposed convex relaxations may have a tremendous positive impact on matrix completion. Computational tractability of the proposed approach is accomplished in two ways. First, the considered relaxations are shown to be representable by semi-definite programs. Second, it is shown how to compute the proximal mappings, for both, the convex relaxations, as well as the non-convex problem. This makes it possible to apply first order method such as so-called Douglas-Rachford splitting. In addition to the convex case, where global convergence of this algorithm is guaranteed, conditions for local convergence in the non-convex setting are presented. Finally, it is shown that the findings of this thesis also extend to the general class of so-called atomic norms that allow us to cover other non-convex constraints

    Identification of an industrial process : a Markov parameter approach

    Get PDF
    • …
    corecore