47 research outputs found

    Kripke Semantics for a Logical Framework

    Get PDF
    We present a semantics (using Kripke lambda models) for a logical framework (minimal implicational predicate logic with quantification over all higher types). We apply the semantics to obtain straightforward adequacy proofs for encodings of logics in the framework. 1 Introduction There has been much recent interest in the development and use of logical frameworks. A logical framework is a formal system within which many different logics can be easily represented. It is hoped that such frameworks will facilitate the rapid development of proof assistants for the wide variety of different logics used in computer science and other fields. In this paper we give a semantic analysis (using Kripke lambda models) of the use of minimal implicational predicate logic (with quantification over all higher types) as a logical framework. We choose this framework because it is relatively straightforward to give it a useful semantics. The use of such a logic as a framework is not new. Similar logics ha..

    A general approach to define binders using matching logic

    Get PDF
    We propose a novel shallow embedding of binders using matching logic, where the binding behavior of object-level binders is obtained for free from the behavior of the built-in existential binder of matching logic. We show that binders in various logical systems such as lambda-calculus, System F, pi-calculus, pure type systems, etc., can be defined in matching logic. We show the correctness of our definitions by proving conservative extension theorems, which state that a sequent/judgment is provable in the original system if and only if it is provable in matching logic. An appealing aspect of our embedding of binders in matching logic is that it yields models to all binders, also for free. We show that models yielded by matching logic are deductively complete to the formal reasoning in the original systems. For lambda-calculus, we further show that the yielded models are representationally complete---a desired property that is not enjoyed by many existing lambda-calculus semantics.Ope

    Proceedings of the 8th Scandinavian Logic Symposium

    Get PDF

    A modal proof theory for final polynomial coalgebras

    Get PDF
    AbstractAn infinitary proof theory is developed for modal logics whose models are coalgebras of polynomial functors on the category of sets. The canonical model method from modal logic is adapted to construct a final coalgebra for any polynomial functor. The states of this final coalgebra are certain “maximal” sets of formulas that have natural syntactic closure properties.The syntax of these logics extends that of previously developed modal languages for polynomial coalgebras by adding formulas that express the “termination” of certain functions induced by transition paths. A completeness theorem is proven for the logic of functors which have the Lindenbaum property that every consistent set of formulas has a maximal extension. This property is shown to hold if the deducibility relation is generated by countably many inference rules.A counter-example to completeness is also given. This is a polynomial functor that is not Lindenbaum: it has an uncountable set of formulas that is deductively consistent but has no maximal extension and is unsatisfiable, even though all of its countable subsets are satisfiable

    Zero-one laws with respect to models of provability logic and two Grzegorczyk logics

    Get PDF
    It has been shown in the late 1960s that each formula of first-order logic without constants and function symbols obeys a zero-one law: As the number of elements of finite models increases, every formula holds either in almost all or in almost no models of that size. Therefore, many properties of models, such as having an even number of elements, cannot be expressed in the language of first-order logic. Halpern and Kapron proved zero-one laws for classes of models corresponding to the modal logics K, T, S4, and S5 and for frames corresponding to S4 and S5. In this paper, we prove zero-one laws for provability logic and its two siblings Grzegorczyk logic and weak Grzegorczyk logic, with respect to model validity. Moreover, we axiomatize validity in almost all relevant finite models, leading to three different axiom systems
    corecore