9,184 research outputs found

    HeteroCore GPU to exploit TLP-resource diversity

    Get PDF

    FastDeepIoT: Towards Understanding and Optimizing Neural Network Execution Time on Mobile and Embedded Devices

    Full text link
    Deep neural networks show great potential as solutions to many sensing application problems, but their excessive resource demand slows down execution time, pausing a serious impediment to deployment on low-end devices. To address this challenge, recent literature focused on compressing neural network size to improve performance. We show that changing neural network size does not proportionally affect performance attributes of interest, such as execution time. Rather, extreme run-time nonlinearities exist over the network configuration space. Hence, we propose a novel framework, called FastDeepIoT, that uncovers the non-linear relation between neural network structure and execution time, then exploits that understanding to find network configurations that significantly improve the trade-off between execution time and accuracy on mobile and embedded devices. FastDeepIoT makes two key contributions. First, FastDeepIoT automatically learns an accurate and highly interpretable execution time model for deep neural networks on the target device. This is done without prior knowledge of either the hardware specifications or the detailed implementation of the used deep learning library. Second, FastDeepIoT informs a compression algorithm how to minimize execution time on the profiled device without impacting accuracy. We evaluate FastDeepIoT using three different sensing-related tasks on two mobile devices: Nexus 5 and Galaxy Nexus. FastDeepIoT further reduces the neural network execution time by 48%48\% to 78%78\% and energy consumption by 37%37\% to 69%69\% compared with the state-of-the-art compression algorithms.Comment: Accepted by SenSys '1

    A Multilevel Introspective Dynamic Optimization System For Holistic Power-Aware Computing

    Get PDF
    Power consumption is rapidly becoming the dominant limiting factor for further improvements in computer design. Curiously, this applies both at the "high end" of workstations and servers and the "low end" of handheld devices and embedded computers. At the high-end, the challenge lies in dealing with exponentially growing power densities. At the low-end, there is a demand to make mobile devices more powerful and longer lasting, but battery technology is not improving at the same rate that power consumption is rising. Traditional power-management research is fragmented; techniques are being developed at specific levels, without fully exploring their synergy with other levels. Most software techniques target either operating systems or compilers but do not explore the interaction between the two layers. These techniques also have not fully explored the potential of virtual machines for power management. In contrast, we are developing a system that integrates information from multiple levels of software and hardware, connecting these levels through a communication channel. At the heart of this system are a virtual machine that compiles and dynamically profiles code, and an optimizer that reoptimizes all code, including that of applications and the virtual machine itself. We believe this introspective, holistic approach enables more informed power-management decisions
    • …
    corecore