109 research outputs found

    Hardware Architecture of a QAM Receiver for Short-Range Optical Communications

    Full text link
    [EN] Short-reach optical fiber communications systems aim to achieve high throughput, in the order of tens of Gbps. The implementation of these high-speed systems requires parallel processing, which makes low-complexity designs of their subsystems a key to the successful large-scale deployment of this technology. Half-Cycle Nyquist Subcarrier Modulation (HC-SCM) was originally suggested for these systems with the goal of using as much bandwidth as possible and, therefore, achieving high communication rates. Recently, Oversampled Subcarrier Modulation (OVS-SCM) was proposed as an alternative more computational efficient than HC-SCM and also with a better spectral efficiency. This paper proposes a hardware-efficient architecture for an OVS-SCM receiver, which takes into account the inherent parallel processing of these systems. This receiver takes 16 samples in parallel from a 5 GSa/s analog-to-digital converter with a 3.2 GHz 3 dB bandwidth. Design solutions for the frame detection block, the mixer, the resampler, the fractional interpolator, the matched filter and the timing estimator are presented. Our results show that, compared to the HC-SCM receiver, this proposal reduces the computational load of the downconverter stages by 90%. FPGA implementation results are given to demonstrate that our proposal can be implemented in state-of-the-art devices.This work was supported in part by MCIN/AEI/10.13039/501100011033 under Grants RTI2018-101658-B100 and PID2021-126514OB-I00, and in part by the European Union through "ERDF Away of making Europe."Valls Coquillat, J.; Torres Carot, V.; Pérez Pascual, MA.; Almenar Terre, V. (2023). Hardware Architecture of a QAM Receiver for Short-Range Optical Communications. Journal of Lightwave Technology. 41(2):451-461. https://doi.org/10.1109/JLT.2022.321735745146141

    System Development for Geolocation in Harsh Environments

    Get PDF
    Wireless sensor networks (WSN) consist of a set of distributed devices equipped with multiple sensors, which can be employed in different environments of varying characteristics. Nowadays, node localization has become one of their most basic and important requirements. Due to the nature of certain environments, typical positioning systems, such as Global Navigation Satellite System (GNSS), cannot be employed. Therefore, in recent years several alternative positioning mechanisms have risen. ROMOVI is a project which has as its main goal the development of low cost autonomous robots capable of monitoring and perform logistic tasks on the steep slopes of the Douro river vineyards. Integrated in this project, this dissertation proposes the development of a full-custom wireless communication system for geolocation purposes in harsh environments. Using a Symmetric Double Sided Two Way Ranging (SDS-TWR) algorithm, it is possible to achieve ranging measures between nodes, thus providing accurate relative positioning. This work focuses mainly on the study of the SDS-TWR algorithm and its major error sources, such as those due to digital clock drift, among others. A preamble based on Frank-Zadoff-Chu sequence was developed and, due to its good periodic autocorrelation properties, a system employing the transmission and reception of this preamble was implemented in hardware, through a field programmable gate array (FPGA). By employing an embedded logic processor, the Altera Nios II, control over the complete procedure of the aforementioned algorithm is possible, to perform and analyze the main advantages of the SDS-TWR algorithm. Finally, a medium access control (MAC) layer frame format was defined, in order to enable future development of communication among multiple nodes, to enhance the original algorithm and, as such, provide the capability of trilateration

    Efficient implementation of channel estimation algorithm for beamforming

    Get PDF
    Abstract. The future 5G mobile network technology is expected to offer significantly better performance than its predecessors. Improved data rates in conjunction with low latency is believed to enable technological revolutions such as self-driving cars. To achieve faster data rates, MIMO systems can be utilized. These systems enable the use of spatial filtering technique known as beamforming. Beamforming that is based on the preacquired channel matrix is computationally very demanding causing challenges in achieving low latency. By acquiring the channel matrix as efficiently as possible, we can facilitate this challenge. In this thesis we examined the implementation of channel estimation algorithm for beamforming with a digital signal processor specialized in vector computation. We present implementations for different antenna configurations based on three different approaches. The results show that the best performance is achieved by applying the algorithm according to the limitations given by the system and the processor architecture. Although the exploitation of the parallel architecture was proved to be challenging, the implementation of the algorithm would have benefitted from the greater amount of parallelism. The current parallel resources will be a challenge especially in the future as the size of antenna configurations is expected to grow.Keilanmuodostuksen tarvitseman kanavaestimointialgoritmin tehokas toteutus. Tiivistelmä. Tulevan viidennen sukupolven mobiiliverkkoteknologian odotetaan tarjoavan merkittävästi edeltäjäänsä parempaa suorituskykyä. Tämän suorituskyvyn tarjoamat suuret datanopeudet yhdistettynä pieneen latenssiin uskotaan mahdollistavan esimerkiksi itsestään ajavat autot. Suurempien datanopeuksien saavuttamiseksi voidaan hyödyntää monitiekanavassa käytettävää MIMO-systeemiä, joka mahdollistaa keilanmuodostuksena tunnetun spatiaalisen suodatusmenetelmän käytön. Etukäteen hankittuun kanavatilatietoon perustuva keilanmuodostus on laskennallisesti erittäin kallista. Tämä aiheuttaa haasteita verkon pienen latenssivaatimuksen saavuttamisessa. Tässä työssä tutkittiin keilanmuodostukselle tarkoitetun kanavaestimointialgoritmin tehokasta toteutusta hyödyntäen vektorilaskentaan erikoistunutta prosessoriarkkitehtuuria. Työssä esitellään kolmea eri lähestymistapaa hyödyntävät toteutukset eri kokoisille antennikonfiguraatioille. Tuloksista nähdään, että paras suorituskyky saavutetaan sovittamalla algoritmi järjestelmän ja arkkitehtuurin asettamien rajoitusten mukaisesti. Vaikka rinnakkaisarkkitehtuurin hyödyntäminen asetti omat haasteensa, olisi algoritmin toteutus hyötynyt suuremmasta rinnakkaisuuden määrästä. Nykyinen rinnakkaisuuden määrä tulee olemaan haaste erityisesti tulevaisuudessa, sillä antennikonfiguraatioiden koon odotetaan kasvavan

    Architectures and Algorithms for the Signal Processing of Advanced MIMO Radar Systems

    Get PDF
    This thesis focuses on the research, development and implementation of novel concepts, architectures, demonstrator systems and algorithms for the signal processing of advanced Multiple Input Multiple Output (MIMO) radar systems. The key concept is to address compact system, which have high resolutions and are able to perform a fast radar signal processing, three-dimensional (3D), and four-dimensional (4D) beamforming for radar image generation and target estimation. The idea is to obtain a complete sensing of range, Azimuth and elevation (additionally Doppler as the fourth dimension) from the targets in the radar captures. The radar technology investigated, aims at addressing sev- eral civil and military applications, such as surveillance and detection of targets, both air and ground based, and situational awareness, both in cars and in flying platforms, from helicopters, to Unmanned Aerial Vehicles (UAV) and air-taxis. Several major topics have been targeted. The development of complete systems and innovative FPGA, ARM and software based digital architectures for 3D imaging MIMO radars, which operate in both Time Division Multiplexing (TDM) and Frequency Divi- sion Multiplexing (FDM) modes, with Frequency Modulated Continuous Wave (FMCW) and Orthogonal Frequency Division Multiplexing (OFDM) signals, respectively. The de- velopment of real-time radar signal processing, beamforming and Direction-Of-Arrival (DOA) algorithms for target detection, with particular focus on FFT based, hardware implementable techniques. The study and implementation of advanced system concepts, parametrisation and simulation of next generation real-time digital radars (e.g. OFDM based). The design and development of novel constant envelope orthogonal waveforms for real-time 3D OFDM MIMO radar systems. The MIMO architectures presented in this thesis are a collection of system concepts, de- sign and simulations, as well as complete radar demonstrators systems, with indoor and outdoor measurements. Several of the results shown, come in the form of radar images which have been captured in field-test, in different scenarios, which aid in showing the proper functionality of the systems. The research activities for this thesis, have been carried out on the premises of Air- bus, based in Munich (Germany), as part of a Ph.D. candidate joint program between Airbus and the Polytechnic Department of Engineering and Architecture (Dipartimento Politecnico di Ingegneria e Architettura), of the University of Udine, based in Udine (Italy).Questa tesi si concentra sulla ricerca, lo sviluppo e l\u2019implementazione di nuovi concetti, architetture, sistemi dimostrativi e algoritmi per l\u2019elaborazione dei segnali in sistemi radar avanzati, basati su tecnologia Multiple Input Multiple Output (MIMO). Il con- cetto chiave `e quello di ottenere sistemi compatti, dalle elevate risoluzioni e in grado di eseguire un\u2019elaborazione del segnale radar veloce, un beam-forming tri-dimensionale (3D) e quadri-dimensionale (4D) per la generazione di immagini radar e la stima delle informazioni dei bersagli, detti target. L\u2019idea `e di ottenere una stima completa, che includa la distanza, l\u2019Azimuth e l\u2019elevazione (addizionalmente Doppler come quarta di- mensione) dai target nelle acquisizioni radar. La tecnologia radar indagata ha lo scopo di affrontare diverse applicazioni civili e militari, come la sorveglianza e la rilevazione di targets, sia a livello aereo che a terra, e la consapevolezza situazionale, sia nelle auto che nelle piattaforme di volo, dagli elicotteri, ai Unmanned Aerial Vehicels (UAV) e taxi volanti (air-taxis). Le tematiche affrontante sono molte. Lo sviluppo di sistemi completi e di architetture digitali innovative, basate su tecnologia FPGA, ARM e software, per radar 3D MIMO, che operano in modalit`a Multiplexing Time Division Multiplexing (TDM) e Multiplexing Frequency Diversion (FDM), con segnali di tipo FMCW (Frequency Modulated Contin- uous Wave) e Orthogonal Frequency Division Multiplexing (OFDM), rispettivamente. Lo sviluppo di tecniche di elaborazione del segnale radar in tempo reale, algoritmi di beam-forming e di stima della direzione di arrivo, Direction-Of-Arrival (DOA), dei seg- nali radar, per il rilevamento dei target, con particolare attenzione a processi basati su trasformate di Fourier (FFT). Lo studio e l\u2019implementazione di concetti di sistema avan- zati, parametrizzazione e simulazione di radar digitali di prossima generazione, capaci di operare in tempo reale (ad esempio basati su architetture OFDM). Progettazione e sviluppo di nuove forme d\u2019onda ortogonali ad inviluppo costante per sistemi radar 3D di tipo OFDM MIMO, operanti in tempo reale. Le attivit`a di ricerca di questa tesi sono state svolte presso la compagnia Airbus, con sede a Monaco di Baviera (Germania), nell\u2019ambito di un programma di dottorato, svoltosi in maniera congiunta tra Airbus ed il Dipartimento Politecnico di Ingegneria e Architettura dell\u2019Universit`a di Udine, con sede a Udine

    Implementation of the Physical Random Access Channel in TDD-LTE using Software Defined Radio

    Get PDF
    In Long Term Evolution (LTE) uplink transmission, a User Equipment (UE) must be time-synchronized before normal data transmission. So that a Physical Random Access Channel (PRACH) becomes a crucial factor for LTE access scheme since it is the base on which the Random Access Channel (RACH) is implemented. In this project, a PRACH module for TD-LTE base station system using software defined radio has been implemented. The System follows the release 8 of LTE-UMTS specifications. During the development, a scenario with simple uplink transmission between one UE and one eNodeB has be considered. The UE is able to generate one PRACH sequence and its baseband signal at a time. In the other hand, The eNodeB is able to generate the 64 PRACH sequences available per LTE-cell, process the baseband signal received from the UE and detect the PRACH sequence transmitted in approximately 1ms.En Long Term Evolution (LTE), en la transmisión en enlace ascendiente, un equipo de usuario (UE) debe estar sincronizado en tiempo antes de la transmisión normal de datos. Por consiguiente, un Physical Random Access Channel (PRACH) se convierte en un factor crucial para el esquema de acceso LTE ya que es la base sobre la que se implementa el Random Access Channel (RACH). En este proyecto, se ha implementado el módulo PRACH para una estación base TD-LTE utilizando radio definida por software. El sistema sigue las especificaciones del LTE-UMTS, version 8. Durante el desarrollo, se ha considerado un escenario en el que tenemos una simple transmisión en enlace ascendiente entre un UE y un eNodeB. El UE es capaz de generar solo un PRACH sequence y su baseband signal cada vez. El eNodeB por el otro lado es capaz de generar los 64 PRACH sequences disponibles para cada LTE-cell, procesar el baseband signal recibido y encontrar en aproximadamente 1 ms el PRACH sequence transmitido.En Long term Evolution, en la transmissió en enllaç ascendent, un equip d'usuari (UE) ha d'estar sincronitzat en temps abans de la transmissió normal de dades. Per conseqüent, un Physical Random Access Channel (PRACH) es torna un factor crucial per a l'esquema d'access LTE ja que es la base sobre la que s' implementa el Random Access Channel (RACH). En aquest project, s'ha implementat el mòdul PRACH per a una estació base TD-LTE utilitzant ràdio definida per software. El sistema segueix les especificacions del LTE-UMTS, versió 8. Durant el desenvolupament, s'ha considerat un escenari en el que tenim una simple transmissió en enllaç ascendent entre un UE y un eNodeB. UE és capaç de generar només un PRACH sequence i el seu baseband signal cada cop. L'eNodeB per la seva part es capaç de generar els 64 PRACH sequences disponibles per a cada LTE-cell, processar el baseband signal rebut i trobar en aproximadament 1 ms el PRACH sequence transmès

    LOCATE-US: Indoor Positioning for Mobile Devices Using Encoded Ultrasonic Signals, Inertial Sensors and Graph- Matching

    Get PDF
    Indoor positioning remains a challenge and, despite much research and development carried out in the last decade, there is still no standard as with the Global Navigation Satellite Systems (GNSS) outdoors. This paper presents an indoor positioning system called LOCATE-US with adjustable granularity for use with commercial mobile devices, such as smartphones or tablets. LOCATE-US is privacy-oriented and allows every device to compute its own position by fusing ultrasonic, inertial sensor measurements and map information. Ultrasonic Local Positioning Systems (ULPS) based on encoded signals are placed in critical zones that require an accuracy below a few decimeters to correct the accumulated drift errors of the inertial measurements. These systems are well suited to work at room level as walls confine acoustic waves inside. To avoid audible artifacts, the U-LPS emission is set at 41.67 kHz, and an ultrasonic acquisition module with reduced dimensions is attached to the mobile device through the USB port to capture signals. Processing in the mobile device involves an improved Time Differences of Arrival (TDOA) estimation that is fused with the measurements from an external inertial sensor to obtain real-time location and trajectory display at a 10 Hz rate. Graph-matching has also been included, considering available prior knowledge about the navigation scenario. This kind of device is an adequate platform for Location-Based Services (LBS), enabling applications such as augmented reality, guiding applications, or people monitoring and assistance. The system architecture can easily incorporate new sensors in the future, such as UWB, RFiD or others.Universidad de AlcaláJunta de Comunidades de Castilla-La ManchaAgencia Estatal de Investigació

    Interference Mitigation in WAIC Systems

    Get PDF
    Advancements in the field of wireless communications in the last few decades have made it an indispensable part of how human made entities, and by extension, humans interact with each other. The inherent lack of the need for significant physical infrastructure brings with it great advantages in terms of mobility, operational and maintenance costs, and overall reliability and flexibility. The characteristics of wireless techniques make for an attractive proposition for enabling operational communications in aircrafts. However, wireless networks bring with them their own set of challenges in terms of range, dependability or susceptibility to interference and security. The main objective of this thesis is to evaluate different wireless communications techniques for their feasibility to be employed as Wireless Avionics Intra-Communications (WAIC) systems. The major hindrance in ensuring reliable communications in this regard comes from the operation of the existing Radio Altimeter systems in the allotted frequency band of 4.2 - 4.4 GHz. WAIC systems based on wireless techniques such as Code Division Multiple Access (CDMA) and Orthogonal Frequency Division Multiplexing (OFDM) have been simulated in MATLAB for the analysis. The performance of the WAIC systems in the presence of interference from Altimeter signals and Additive White Gaussian Noise (AWGN) has been evaluated and studied
    corecore