30,617 research outputs found

    Open-TEE - An Open Virtual Trusted Execution Environment

    Full text link
    Hardware-based Trusted Execution Environments (TEEs) are widely deployed in mobile devices. Yet their use has been limited primarily to applications developed by the device vendors. Recent standardization of TEE interfaces by GlobalPlatform (GP) promises to partially address this problem by enabling GP-compliant trusted applications to run on TEEs from different vendors. Nevertheless ordinary developers wishing to develop trusted applications face significant challenges. Access to hardware TEE interfaces are difficult to obtain without support from vendors. Tools and software needed to develop and debug trusted applications may be expensive or non-existent. In this paper, we describe Open-TEE, a virtual, hardware-independent TEE implemented in software. Open-TEE conforms to GP specifications. It allows developers to develop and debug trusted applications with the same tools they use for developing software in general. Once a trusted application is fully debugged, it can be compiled for any actual hardware TEE. Through performance measurements and a user study we demonstrate that Open-TEE is efficient and easy to use. We have made Open- TEE freely available as open source.Comment: Author's version of article to appear in 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2015, Helsinki, Finland, August 20-22, 201

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Prototype test insertion co-processor for agile development in multi-threaded embedded environments

    Get PDF
    Agile methodologies have been shown useful in constructing Enterprise applications with a reduced level of defects in the released product. Movement of Agile processes into the embedded world is hindered by the lack of suitable tool support. For example, software instrumented test insertion methods to detect race condition in multithreaded programs have the potential to increase code size beyond the limited embedded system memory, and degrade performance to an extent that would impair the real-time characteristics of the system. We propose a FPGA-based, hardware assisted, test insertion co-processor for embedded systems which introduces low additional system overhead and incurs minimal code size increase. In this preliminary study, we compare the ideal characteristics of a FPGA-based test insertion co-processor with our initial prototype and other proposed hardware assisted test insertion approaches

    HyperDbg: Reinventing Hardware-Assisted Debugging (Extended Version)

    Full text link
    Software analysis, debugging, and reverse engineering have a crucial impact in today's software industry. Efficient and stealthy debuggers are especially relevant for malware analysis. However, existing debugging platforms fail to address a transparent, effective, and high-performance low-level debugger due to their detectable fingerprints, complexity, and implementation restrictions. In this paper, we present HyperDbg, a new hypervisor-assisted debugger for high-performance and stealthy debugging of user and kernel applications. To accomplish this, HyperDbg relies on state-of-the-art hardware features available in today's CPUs, such as VT-x and extended page tables. In contrast to other widely used existing debuggers, we design HyperDbg using a custom hypervisor, making it independent of OS functionality or API. We propose hardware-based instruction-level emulation and OS-level API hooking via extended page tables to increase the stealthiness. Our results of the dynamic analysis of 10,853 malware samples show that HyperDbg's stealthiness allows debugging on average 22% and 26% more samples than WinDbg and x64dbg, respectively. Moreover, in contrast to existing debuggers, HyperDbg is not detected by any of the 13 tested packers and protectors. We improve the performance over other debuggers by deploying a VMX-compatible script engine, eliminating unnecessary context switches. Our experiment on three concrete debugging scenarios shows that compared to WinDbg as the only kernel debugger, HyperDbg performs step-in, conditional breaks, and syscall recording, 2.98x, 1319x, and 2018x faster, respectively. We finally show real-world applications, such as a 0-day analysis, structure reconstruction for reverse engineering, software performance analysis, and code-coverage analysis
    • …
    corecore