16 research outputs found

    Capability-based Frameworks for Industrial Robot Skills: a Survey

    Get PDF
    The research community is puzzled with words like skill, action, atomic unit and others when describing robots? capabilities. However, for giving the possibility to integrate capabilities in industrial scenarios, a standardization of these descriptions is necessary. This work uses a structured review approach to identify commonalities and differences in the research community of robots? skill frameworks. Through this method, 210 papers were analyzed and three main results were obtained. First, the vast majority of authors agree on a taxonomy based on task, skill and primitive. Second, the most investigated robots? capabilities are pick and place. Third, industrial oriented applications focus more on simple robots? capabilities with fixed parameters while ensuring safety aspects. Therefore, this work emphasizes that a taxonomy based on task, skill and primitives should be used by future works to align with existing literature. Moreover, further research is needed in the industrial domain for parametric robots? capabilities while ensuring safety

    Adaptive Robot Framework: Providing Versatility and Autonomy to Manufacturing Robots Through FSM, Skills and Agents

    Get PDF
    207 p.The main conclusions that can be extracted from an analysis of the current situation and future trends of the industry,in particular manufacturing plants, are the following: there is a growing need to provide customization of products, ahigh variation of production volumes and a downward trend in the availability of skilled operators due to the ageingof the population. Adapting to this new scenario is a challenge for companies, especially small and medium-sizedenterprises (SMEs) that are suffering first-hand how their specialization is turning against them.The objective of this work is to provide a tool that can serve as a basis to face these challenges in an effective way.Therefore the presented framework, thanks to its modular architecture, allows focusing on the different needs of eachparticular company and offers the possibility of scaling the system for future requirements. The presented platform isdivided into three layers, namely: interface with robot systems, the execution engine and the application developmentlayer.Taking advantage of the provided ecosystem by this framework, different modules have been developed in order toface the mentioned challenges of the industry. On the one hand, to address the need of product customization, theintegration of tools that increase the versatility of the cell are proposed. An example of such tools is skill basedprogramming. By applying this technique a process can be intuitively adapted to the variations or customizations thateach product requires. The use of skills favours the reuse and generalization of developed robot programs.Regarding the variation of the production volumes, a system which permits a greater mobility and a faster reconfigurationis necessary. If in a certain situation a line has a production peak, mechanisms for balancing the loadwith a reasonable cost are required. In this respect, the architecture allows an easy integration of different roboticsystems, actuators, sensors, etc. In addition, thanks to the developed calibration and set-up techniques, the system canbe adapted to new workspaces at an effective time/cost.With respect to the third mentioned topic, an agent-based monitoring system is proposed. This module opens up amultitude of possibilities for the integration of auxiliary modules of protection and security for collaboration andinteraction between people and robots, something that will be necessary in the not so distant future.For demonstrating the advantages and adaptability improvement of the developed framework, a series of real usecases have been presented. In each of them different problematic has been resolved using developed skills,demonstrating how are adapted easily to the different casuistic

    Unifying Skill-Based Programming and Programming by Demonstration through Ontologies

    Get PDF
    Smart manufacturing requires easily reconfigurable robotic systems to increase the flexibility in presence of market uncertainties by reducing the set-up times for new tasks. One enabler of fast reconfigurability is given by intuitive robot programming methods. On the one hand, offline skill-based programming (OSP) allows the definition of new tasks by sequencing pre-defined, parameterizable building blocks termed as skills in a graphical user interface. On the other hand, programming by demonstration (PbD) is a well known technique that uses kinesthetic teaching for intuitive robot programming, where this work presents an approach to automatically recognize skills from the human demonstration and parameterize them using the recorded data. The approach further unifies both programming modes of OSP and PbD with the help of an ontological knowledge base and empowers the end user to choose the preferred mode for each phase of the task. In the experiments, we evaluate two scenarios with different sequences of programming modes being selected by the user to define a task. In each scenario, skills are recognized by a data-driven classifier and automatically parameterized from the recorded data. The fully defined tasks consist of both manually added and automatically recognized skills and are executed in the context of a realistic industrial assembly environment

    Adaptive Robot Framework: Providing Versatility and Autonomy to Manufacturing Robots Through FSM, Skills and Agents

    Get PDF
    207 p.The main conclusions that can be extracted from an analysis of the current situation and future trends of the industry,in particular manufacturing plants, are the following: there is a growing need to provide customization of products, ahigh variation of production volumes and a downward trend in the availability of skilled operators due to the ageingof the population. Adapting to this new scenario is a challenge for companies, especially small and medium-sizedenterprises (SMEs) that are suffering first-hand how their specialization is turning against them.The objective of this work is to provide a tool that can serve as a basis to face these challenges in an effective way.Therefore the presented framework, thanks to its modular architecture, allows focusing on the different needs of eachparticular company and offers the possibility of scaling the system for future requirements. The presented platform isdivided into three layers, namely: interface with robot systems, the execution engine and the application developmentlayer.Taking advantage of the provided ecosystem by this framework, different modules have been developed in order toface the mentioned challenges of the industry. On the one hand, to address the need of product customization, theintegration of tools that increase the versatility of the cell are proposed. An example of such tools is skill basedprogramming. By applying this technique a process can be intuitively adapted to the variations or customizations thateach product requires. The use of skills favours the reuse and generalization of developed robot programs.Regarding the variation of the production volumes, a system which permits a greater mobility and a faster reconfigurationis necessary. If in a certain situation a line has a production peak, mechanisms for balancing the loadwith a reasonable cost are required. In this respect, the architecture allows an easy integration of different roboticsystems, actuators, sensors, etc. In addition, thanks to the developed calibration and set-up techniques, the system canbe adapted to new workspaces at an effective time/cost.With respect to the third mentioned topic, an agent-based monitoring system is proposed. This module opens up amultitude of possibilities for the integration of auxiliary modules of protection and security for collaboration andinteraction between people and robots, something that will be necessary in the not so distant future.For demonstrating the advantages and adaptability improvement of the developed framework, a series of real usecases have been presented. In each of them different problematic has been resolved using developed skills,demonstrating how are adapted easily to the different casuistic

    Semantic Plug & Play - Selbstbeschreibende Hardware für modulare Robotersysteme

    Get PDF
    Moderne Robotersysteme bestehen aus einer Vielzahl unterschiedlicher Sensoren und Aktuatoren, aus deren Zusammenwirken verschiedene Fähigkeiten entstehen und nutzbar gemacht werden. So kann ein Knickarmroboter über die koordinierte Ansteuerung mehrerer Motoren Gegenstände greifen, oder ein Quadrocopter über Sensoren seine Lage und Position bestimmen. Eine besondere Ausprägung bilden modulare Robotersysteme, in denen sich Sensoren und Aktuatoren dynamisch entfernen, austauschen oder hinzufügen lassen, wodurch auch die verfügbaren Fähigkeiten beeinflusst werden. Die Flexibilität modularer Robotersysteme wird jedoch durch deren eingeschränkte Kompatibilität begrenzt. So existieren zahlreiche proprietäre Systeme, die zwar eine einfache Verwendung ermöglichen aber nur auf eine begrenzte Menge an modularen Elementen zurückgreifen können. Open-Source-Projekte mit einer breiten Unterstützung im Hardwarebereich, wie bspw. die Arduino-Plattform, oder Softwareprojekte, wie das Robot Operating System (ROS) versuchen, eine eben solch breite Kompatibilität zu bieten, erfordern allerdings eine sehr ausführliche Dokumentation der Hardware für die Integration. Das zentrale Ergebnis dieser Dissertation ist ein Technologiestack (Semantic Plug & Play) für die einfache Dokumentation und Integration modularer Hardwareelemente durch Selbstbeschreibungsmechanismen. In vielen Anwendungen befindet sich die Dokumentation üblicherweise verteilt in Textdokumenten, Onlineinhalten und Quellcodedokumentationen. In Semantic Plug & Play wird ein System basierend auf den Technologien des Semantic Web vorgestellt, das nicht nur eben solch vorhandene Dokumentationen vereinheitlicht und kollektiviert, sondern das auch durch eine maschinenlesbare Aufbereitung die Dokumentation in der Prozessdefinition verwendet werden kann. Eine in dieser Dissertation entwickelte Architektur bietet für die Prozessdefinition eine API für objektorientierte Programmiersprachen, in der abstrakte Fähigkeiten verwendet werden können. Mit einem besonderen Fokus auf zur Laufzeit rekonfigurierbare Systeme können damit Fähigkeiten über Anforderungen an aktuelle Hardwarekonfigurationen ausgedrückt werden. So ist es möglich, qualitative und quantitative Eigenschaften als Voraussetzung für Fähigkeiten zu definieren, die erst bei einem Wechsel modularer Hardwareelemente erfüllt werden. Diesem Prinzip folgend werden auch kombinierte Fähigkeiten unterstützt, die andere Fähigkeiten hardwareübergreifend für ihre intrinsische Ausführung nutzen. Für die Kapselung der Selbstbeschreibung auf einzelnen Hardwareelementen werden unterschiedliche Adapter in Semantic Plug & Play unterstützt, wie etwa Mikrocontroller oder X86- und ARM-Systeme. Semantic Plug & Play ermöglicht zudem eine Erweiterbarkeit zu ROS anhand unterschiedlicher Werkzeuge, die nicht nur eine hybride Nutzung erlauben, sondern auch die Komplexität mit modellgetriebenen Ansätzen beherrschbar machen. Die Flexibilität von Semantic Plug & Play wird in sechs Experimenten anhand unterschiedlicher Hardware illustriert. Alle Experimente adressieren dabei Problemstellungen einer übergeordneten Fallstudie, für die ein heterogener Quadrocopterschwarm in hochgradig dynamischen Szenarien eingesetzt und gezielt rekonfiguriert wird

    Industry 4.0 for SMEs

    Get PDF
    This open access book explores the concept of Industry 4.0, which presents a considerable challenge for the production and service sectors. While digitization initiatives are usually integrated into the central corporate strategy of larger companies, smaller firms often have problems putting Industry 4.0 paradigms into practice. Small and medium-sized enterprises (SMEs) possess neither the human nor financial resources to systematically investigate the potential and risks of introducing Industry 4.0. Addressing this obstacle, the international team of authors focuses on the development of smart manufacturing concepts, logistics solutions and managerial models specifically for SMEs. Aiming to provide methodological frameworks and pilot solutions for SMEs during their digital transformation, this innovative and timely book will be of great use to scholars researching technology management, digitization and small business, as well as practitioners within manufacturing companies

    Trusted Artificial Intelligence in Manufacturing; Trusted Artificial Intelligence in Manufacturing

    Get PDF
    The successful deployment of AI solutions in manufacturing environments hinges on their security, safety and reliability which becomes more challenging in settings where multiple AI systems (e.g., industrial robots, robotic cells, Deep Neural Networks (DNNs)) interact as atomic systems and with humans. To guarantee the safe and reliable operation of AI systems in the shopfloor, there is a need to address many challenges in the scope of complex, heterogeneous, dynamic and unpredictable environments. Specifically, data reliability, human machine interaction, security, transparency and explainability challenges need to be addressed at the same time. Recent advances in AI research (e.g., in deep neural networks security and explainable AI (XAI) systems), coupled with novel research outcomes in the formal specification and verification of AI systems provide a sound basis for safe and reliable AI deployments in production lines. Moreover, the legal and regulatory dimension of safe and reliable AI solutions in production lines must be considered as well. To address some of the above listed challenges, fifteen European Organizations collaborate in the scope of the STAR project, a research initiative funded by the European Commission in the scope of its H2020 program (Grant Agreement Number: 956573). STAR researches, develops, and validates novel technologies that enable AI systems to acquire knowledge in order to take timely and safe decisions in dynamic and unpredictable environments. Moreover, the project researches and delivers approaches that enable AI systems to confront sophisticated adversaries and to remain robust against security attacks. This book is co-authored by the STAR consortium members and provides a review of technologies, techniques and systems for trusted, ethical, and secure AI in manufacturing. The different chapters of the book cover systems and technologies for industrial data reliability, responsible and transparent artificial intelligence systems, human centered manufacturing systems such as human-centred digital twins, cyber-defence in AI systems, simulated reality systems, human robot collaboration systems, as well as automated mobile robots for manufacturing environments. A variety of cutting-edge AI technologies are employed by these systems including deep neural networks, reinforcement learning systems, and explainable artificial intelligence systems. Furthermore, relevant standards and applicable regulations are discussed. Beyond reviewing state of the art standards and technologies, the book illustrates how the STAR research goes beyond the state of the art, towards enabling and showcasing human-centred technologies in production lines. Emphasis is put on dynamic human in the loop scenarios, where ethical, transparent, and trusted AI systems co-exist with human workers. The book is made available as an open access publication, which could make it broadly and freely available to the AI and smart manufacturing communities

    Industry 4.0 for SMEs

    Get PDF
    This open access book explores the concept of Industry 4.0, which presents a considerable challenge for the production and service sectors. While digitization initiatives are usually integrated into the central corporate strategy of larger companies, smaller firms often have problems putting Industry 4.0 paradigms into practice. Small and medium-sized enterprises (SMEs) possess neither the human nor financial resources to systematically investigate the potential and risks of introducing Industry 4.0. Addressing this obstacle, the international team of authors focuses on the development of smart manufacturing concepts, logistics solutions and managerial models specifically for SMEs. Aiming to provide methodological frameworks and pilot solutions for SMEs during their digital transformation, this innovative and timely book will be of great use to scholars researching technology management, digitization and small business, as well as practitioners within manufacturing companies
    corecore