15,166 research outputs found

    Spatially Coupled Codes and Optical Fiber Communications: An Ideal Match?

    Full text link
    In this paper, we highlight the class of spatially coupled codes and discuss their applicability to long-haul and submarine optical communication systems. We first demonstrate how to optimize irregular spatially coupled LDPC codes for their use in optical communications with limited decoding hardware complexity and then present simulation results with an FPGA-based decoder where we show that very low error rates can be achieved and that conventional block-based LDPC codes can be outperformed. In the second part of the paper, we focus on the combination of spatially coupled LDPC codes with different demodulators and detectors, important for future systems with adaptive modulation and for varying channel characteristics. We demonstrate that SC codes can be employed as universal, channel-agnostic coding schemes.Comment: Invited paper to be presented in the special session on "Signal Processing, Coding, and Information Theory for Optical Communications" at IEEE SPAWC 201

    Ku-band system design study and TDRSS interface analysis

    Get PDF
    The capabilities of the Shuttle/TDRSS link simulation program (LinCsim) were expanded to account for radio frequency interference (RFI) effects on the Shuttle S-band links, the channel models were updated to reflect the RFI related hardware changes, the ESTL hardware modeling of the TDRS communication payload was reviewed and evaluated, in LinCsim the Shuttle/TDRSS signal acquisition was modeled, LinCsim was upgraded, and possible Shuttle on-orbit navigation techniques was evaluated

    Simulation of the TDRS multipath environment

    Get PDF
    Design principles and implementation methods are discussed for simulating the propagation path between a tracking and data relay satellite and a mission spacecraft. The emphasis is on multipath and Doppler simulation but additive disturbances are also considered. The recommended form of the simulator is fed separately with the unmodulated carrier, the unmodulated subcarriers (or spread-spectrum components) and the data signals. The perturbations are also introduced separately; then successive modulation operations are performed. The simulator is segmented into elements that perform the various functions of direct and specular multipath, diffuse fading, Doppler shift and delay spread. Delay spreads are realized by discrete delays operating on baseband signals. Doppler simulation and ionospheric or diffuse multipath fading are applied to individual paths before or after modulation of the carrier by delayed baseband signals. Block diagrams are presented on how the different elements are combined to create a complete channel simulator

    Janus: An Uncertain Cache Architecture to Cope with Side Channel Attacks

    Full text link
    Side channel attacks are a major class of attacks to crypto-systems. Attackers collect and analyze timing behavior, I/O data, or power consumption in these systems to undermine their effectiveness in protecting sensitive information. In this work, we propose a new cache architecture, called Janus, to enable crypto-systems to introduce randomization and uncertainty in their runtime timing behavior and power utilization profile. In the proposed cache architecture, each data block is equipped with an on-off flag to enable/disable the data block. The Janus architecture has two special instructions in its instruction set to support the on-off flag. Beside the analytical evaluation of the proposed cache architecture, we deploy it in an ARM-7 processor core to study its feasibility and practicality. Results show a significant variation in the timing behavior across all the benchmarks. The new secure processor architecture has minimal hardware overhead and significant improvement in protecting against power analysis and timing behavior attacks.Comment: 4 pages, 4 figure

    A VHDL-AMS Simulation Environment for an UWB Impulse Radio Transceiver

    Get PDF
    Ultra-Wide-Band (UWB) communication based on the impulse radio paradigm is becoming increasingly popular. According to the IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a, UWB will play a major role in localization applications, due to the high time resolution of UWB signals which allow accurate indirect measurements of distance between transceivers. Key for the successful implementation of UWB transceivers is the level of integration that will be reached, for which a simulation environment that helps take appropriate design decisions is crucial. Owing to this motivation, in this paper we propose a multiresolution UWB simulation environment based on the VHDL-AMS hardware description language, along with a proper methodology which helps tackle the complexity of designing a mixed-signal UWB System-on-Chip. We applied the methodology and used the simulation environment for the specification and design of an UWB transceiver based on the energy detection principle. As a by-product, simulation results show the effectiveness of UWB in the so-called ranging application, that is the accurate evaluation of the distance between a couple of transceivers using the two-way-ranging metho

    Cognitive Sub-Nyquist Hardware Prototype of a Collocated MIMO Radar

    Full text link
    We present the design and hardware implementation of a radar prototype that demonstrates the principle of a sub-Nyquist collocated multiple-input multiple-output (MIMO) radar. The setup allows sampling in both spatial and spectral domains at rates much lower than dictated by the Nyquist sampling theorem. Our prototype realizes an X-band MIMO radar that can be configured to have a maximum of 8 transmit and 10 receive antenna elements. We use frequency division multiplexing (FDM) to achieve the orthogonality of MIMO waveforms and apply the Xampling framework for signal recovery. The prototype also implements a cognitive transmission scheme where each transmit waveform is restricted to those pre-determined subbands of the full signal bandwidth that the receiver samples and processes. Real-time experiments show reasonable recovery performance while operating as a 4x5 thinned random array wherein the combined spatial and spectral sampling factor reduction is 87.5% of that of a filled 8x10 array.Comment: 5 pages, Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa) 201
    • …
    corecore