469 research outputs found

    A Moving Direction and Historical Information Assisted Fast Handover in LTE-A

    Get PDF
    Handover is one of the critical features in mobility management of Long Term Evolution Advanced (LTE-A) wireless systems. It allows the User Equipment (UE) to roam between LTE-A wireless networks. LTE-A is purely on hard handover, which may cause loss data if the handover is not fast. In this paper, an advanced technique proposed which combined between the current UE moving direction and its history information. Our proposed tracks the UE positions to discover its direction. When the UE is being near to handover area the UE starts searching in its history to return back the target cell. If the UE trajectory does not exist in its history then the UE and its serving cell start searching for target cell through using cosine function in order to select target cell.  Our proposed technique is expected to increase the throughput, reduce the packet delay and loss, and reduce the frequent handovers

    Regressive Prediction Approach to Vertical Handover in Fourth Generation Wireless Networks

    Get PDF
    The over increasing demand for deployment of wireless access networks has made wireless mobile devices to face so many challenges in choosing the best suitable network from a set of available access networks. Some of the weighty issues in 4G wireless networks are fastness and seamlessness in handover process. This paper therefore, proposes a handover technique based on movement prediction in wireless mobile (WiMAX and LTE-A) environment. The technique enables the system to predict signal quality between the UE and Radio Base Stations (RBS)/Access Points (APs) in two different networks. Prediction is achieved by employing the Markov Decision Process Model (MDPM) where the movement of the UE is dynamically estimated and averaged to keep track of the signal strength of mobile users. With the help of the prediction, layer-3 handover activities are able to occur prior to layer-2 handover, and therefore, total handover latency can be reduced. The performances of various handover approaches influenced by different metrics (mobility velocities) were evaluated. The results presented demonstrate good accuracy the proposed method was able to achieve in predicting the next signal level by reducing the total handover latency

    Q-Learning vertical handover scheme in two-tier LTE-A networks

    Get PDF
    Global mobile communication necessitates improved capacity and proper quality assurance for services. To achieve these requirements, small cells have been deployed intensively by long term evolution (LTE) networks operators beside conventional base station structure to provide customers with better service and capacity coverage. Accomplishment of seamless handover between Macrocell layer (first tier) and Femtocell layer (second tier) is one of the key challenges to attain the QoS requirements. Handover related information gathering becomes very hard in high dense femtocell networks, effective handover decision techniques are important to minimize unnecessary handovers occurred and avoid Ping-Pong effect. In this work, we proposed and implemented an efficient handover decision procedure based on users’ profiles using Q-learning technique in an LTE-A macrocell-femtocell networks. New multi-criterion handover decision parameters are proposed in typical/dense femtocells in microcells environment to estimate the target cell for handover. The proposed handover algorithms are validated using the LTE-Sim simulator under an urban environment. The simulation results showed noteworthy reduction in the average number of handovers

    Cell Selection Mechanism Based on Q-learning Environment in Femtocell LTE-A Networks

    Get PDF
    Universal mobile networks require enhanced capability and appropriate quality of service (QoS) and experience (QoE). To achieve this, Long Term Evolution (LTE) system operators have intensively deployed femtocells (HeNBs) along with macrocells (eNBs) to offer user equipment (UE) with optimal capacity coverage and best quality of service. To achieve the requirement of QoS in the handover stage among macrocells and femtocells we need a seamless cell selection mechanism. Cell selection requirements are considered a difficult task in femtocell-based networks and effective cell selection procedures are essential to reduce the ping-pong phenomenon and to minimize needless handovers. In this study, we propose a seamless cell selection scheme for macrocell-femtocell LTE systems, based on the Q-learning environment. A novel cell selection mechanism is proposed for high-density femtocell network topologies to evaluate the target base station in the handover stage. We used the LTE-Sim simulator to implement and evaluate the cell selection procedures. The simulation results were encouraging: a decrease in the control signaling rate and packet loss ratio were observed and at the same time the system throughput was increased

    Memory-full context-aware predictive mobility management in dual connectivity 5G networks

    Get PDF
    Network densification with small cell deployment is being considered as one of the dominant themes in the fifth generation (5G) cellular system. Despite the capacity gains, such deployment scenarios raise several challenges from mobility management perspective. The small cell size, which implies a small cell residence time, will increase the handover (HO) rate dramatically. Consequently, the HO latency will become a critical consideration in the 5G era. The latter requires an intelligent, fast and light-weight HO procedure with minimal signalling overhead. In this direction, we propose a memory-full context-aware HO scheme with mobility prediction to achieve the aforementioned objectives. We consider a dual connectivity radio access network architecture with logical separation between control and data planes because it offers relaxed constraints in implementing the predictive approaches. The proposed scheme predicts future HO events along with the expected HO time by combining radio frequency performance to physical proximity along with the user context in terms of speed, direction and HO history. To minimise the processing and the storage requirements whilst improving the prediction performance, a user-specific prediction triggering threshold is proposed. The prediction outcome is utilised to perform advance HO signalling whilst suspending the periodic transmission of measurement reports. Analytical and simulation results show that the proposed scheme provides promising gains over the conventional approach

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    The Design and Implementation of an Over-the-top Cloud-based Vertical Handover Decision Service for Heterogeneous Wireless Networks

    Get PDF
    The widespread availability of heterogeneous wireless networks (hetnets) presents a resource allocation challenge to network operators and administrators. Overlapping network coverage should be utilized to its fullest extent, providing users with a fair share of bandwidth while maximizing the efficient use of the operator\u27s resources. Currently, network selection occurs locally at the mobile device and does not take into account factors such as the state of other networks that might be available in the device\u27s location. The local decision made by the device can often result in underutilization of network resources and a degraded user experience. This type of selfish network selection might not result in optimal bandwidth allocation when compared to approaches that make use of a centralized resource controller \cite{gpf}. The decision making process behind the selection of these networks continues to be an open area of research, and a variety of algorithms have been proposed to solve this problem. An over-the-top handover decision service treats each wireless access network in a hetnet as a black box, assuming detailed network topology and state information is unavailable to the handover decision algorithm. The algorithm then uses network data gathered empirically from users to provide them with a network selection service that considers the current conditions of available networks in a given location. This is a departure from past designs of vertical handover decision algorithms, which tend to approach the problem from the perspective of individual network operators. The wide range of radio access technologies operated by different network operators that are available to a device within a hetnet, coupled with the mobile data offload effort, is the primary motivator behind our novel choice in direction. This thesis documents the design and implementation of such an over-the-top vertical handover decision service
    corecore