3,079 research outputs found

    Factors influencing visual attention switch in multi-display user interfaces: a survey

    Get PDF
    Multi-display User Interfaces (MDUIs) enable people to take advantage of the different characteristics of different display categories. For example, combining mobile and large displays within the same system enables users to interact with user interface elements locally while simultaneously having a large display space to show data. Although there is a large potential gain in performance and comfort, there is at least one main drawback that can override the benefits of MDUIs: the visual and physical separation between displays requires that users perform visual attention switches between displays. In this paper, we present a survey and analysis of existing data and classifications to identify factors that can affect visual attention switch in MDUIs. Our analysis and taxonomy bring attention to the often ignored implications of visual attention switch and collect existing evidence to facilitate research and implementation of effective MDUIs.Postprin

    GPU-based Image Analysis on Mobile Devices

    Get PDF
    With the rapid advances in mobile technology many mobile devices are capable of capturing high quality images and video with their embedded camera. This paper investigates techniques for real-time processing of the resulting images, particularly on-device utilizing a graphical processing unit. Issues and limitations of image processing on mobile devices are discussed, and the performance of graphical processing units on a range of devices measured through a programmable shader implementation of Canny edge detection.Comment: Proceedings of Image and Vision Computing New Zealand 201

    Cross-display attention switching in mobile interaction with large displays

    Get PDF
    Mobile devices equipped with features (e.g., camera, network connectivity and media player) are increasingly being used for different tasks such as web browsing, document reading and photography. While the portability of mobile devices makes them desirable for pervasive access to information, their small screen real-estate often imposes restrictions on the amount of information that can be displayed and manipulated on them. On the other hand, large displays have become commonplace in many outdoor as well as indoor environments. While they provide an efficient way of presenting and disseminating information, they provide little support for digital interactivity or physical accessibility. Researchers argue that mobile phones provide an efficient and portable way of interacting with large displays, and the latter can overcome the limitations of the small screens of mobile devices by providing a larger presentation and interaction space. However, distributing user interface (UI) elements across a mobile device and a large display can cause switching of visual attention and that may affect task performance. This thesis specifically explores how the switching of visual attention across a handheld mobile device and a vertical large display can affect a single user's task performance during mobile interaction with large displays. It introduces a taxonomy based on the factors associated with the visual arrangement of Multi Display User Interfaces (MDUIs) that can influence visual attention switching during interaction with MDUIs. It presents an empirical analysis of the effects of different distributions of input and output across mobile and large displays on the user's task performance, subjective workload and preference in the multiple-widget selection task, and in visual search tasks with maps, texts and photos. Experimental results show that the selection of multiple widgets replicated on the mobile device as well as on the large display, versus those shown only on the large display, is faster despite the cost of initial attention switching in the former. On the other hand, a hybrid UI configuration where the visual output is distributed across the mobile and large displays is the worst, or equivalent to the worst, configuration in all the visual search tasks. A mobile device-controlled large display configuration performs best in the map search task and equal to best (i.e., tied with a mobile-only configuration) in text- and photo-search tasks

    An Innovative Photogrammetric System for 3D Digitization of Dental Models

    Get PDF
    This paper presents an innovative system for 3D reconstruction of a physical dental model. The innovative system is based on close-range photogrammetry and enables the projection of digital light texture on the objects surface. It is based on the application of mirrors that direct the digital light texture to the vertical surfaces of the physical model. In this way, high coverage of the object is achieved, and 3D reconstruction from one set of photographs is possible. 3D digitization, verification and comparison of the proposed methodology was performed on dental models that are characterized by extremely complex surfaces. It was performed by comparing the proposed approach with active stereovision, and the efficiency was evaluated in relation to the reference 3D model obtained by the structured light 3D scanner. The comparison of the results was performed on the basis of the mean deviation and standard deviation for the 3D model with combined teeth and for the 3D model with metal caps. The absolute mean deviations for the 3D model with combined teeth are 0.004-0.021 mm, with a standard deviation of 0.055-0.058 mm, and for the 3D model with metal caps absolute mean deviations are 0.015-0.033 mm, with a standard deviation of 0.095-0.113 mm, respectively. Absolute minimum values of mean deviation of 0.004 mm and standard deviations of 0.055 mm were obtained by 3D model with combined teeth,which was reconstructed by the proposed innovative approach. The obtained results indicate a higher accuracy of the innovative approach in relation to the use of a commercial 3D scanner that uses active stereovision principle

    Tablet PCs in schools: a review of literature and selected projects

    Get PDF

    New Generation of Instrumented Ranges: Enabling Automated Performance Analysis

    Get PDF
    Military training conducted on physical ranges that match a unit’s future operational environment provides an invaluable experience. Today, to conduct a training exercise while ensuring a unit’s performance is closely observed, evaluated, and reported on in an After Action Review, the unit requires a number of instructors to accompany the different elements. Training organized on ranges for urban warfighting brings an additional level of complexity—the high level of occlusion typical for these environments multiplies the number of evaluators needed. While the units have great need for such training opportunities, they may not have the necessary human resources to conduct them successfully. In this paper we report on our US Navy/ONR-sponsored project aimed at a new generation of instrumented ranges, and the early results we have achieved. We suggest a radically different concept: instead of recording multiple video streams that need to be reviewed and evaluated by a number of instructors, our system will focus on capturing dynamic individual warfighter pose data and performing automated performance evaluation. We will use an in situ network of automatically-controlled pan-tilt-zoom video cameras and personal position and orientation sensing devices. Our system will record video, reconstruct dynamic 3D individual poses, analyze, recognize events, evaluate performances, generate reports, provide real-time free exploration of recorded data, and even allow the user to generate ‘what-if’ scenarios that were never recorded. The most direct benefit for an individual unit will be the ability to conduct training with fewer human resources, while having a more quantitative account of their performance (dispersion across the terrain, ‘weapon flagging’ incidents, number of patrols conducted). The instructors will have immediate feedback on some elements of the unit’s performance. Having data sets for multiple units will enable historical trend analysis, thus providing new insights and benefits for the entire service.Office of Naval Researc
    corecore